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ABSTRACT 
Much work has studied the effect of different treatments of missing values on model induction, but little work 

has analyzed treatments for the common case of omitted values at prediction time. The previous models results 

show that for the two most popular treatments, each is preferable under different conditions. Strikingly the 

reduced-models approach, seldom mentioned or used, consistently outperforms the other two methods, 

sometimes by a large margin. The lack of attention to reduced modeling may be due in part to its (perceived) 

expense in terms of computation or storage. Therefore, we then introduce and evaluate alternative, hybrid 

approaches that allow users to balance between more accurate but computationally expensive reduced 

modeling and the other, less accurate but less computationally expensive treatments. The results show that the 

hybrid methods can scale gracefully to the amount of investment in computation/storage, and that they 

outperform imputation even for small investments. 
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I. INTRODUCTION OF HYBRID MODELS FOR EFFICIENT CALCULATION OF 

OMITTED VALUES 
The increase in accuracy of reduced modeling comes at a cost, either in terms of storage or of prediction-time 

computation (or both). Either a new model must be induced for every (novel) pattern of Omitted  values 

encountered, or a large number of models must be stored. Storing many classification models has become 

standard practice, for example, for improving accuracy with classifier ensembles. Unfortunately, the storage 

requirements for full-blown reduced modeling become impracticably large as soon as the possible number of 

(simultaneous) Omitted  values exceeds a dozen or so. The strength of reduced modeling in the empirical results 

presented above suggests its tactical use to improve imputation, for example by creating hybrid models that 

trade off efficiency for improved accuracy. 

 

1.1 Likelihood-based Hybrid Solutions 
One approach for reducing the computational cost of reduced modeling is to induce and store models for some 

subset of the possible patterns of Omitted  features. When a test case is encountered, the corresponding reduced 

model is queried. If no corresponding model has been stored, the hybrid would call on a fallback technique: 

either incurring the expense of prediction-time reduced modeling, or invoking an imputation method (and 

possibly incurring reduced accuracy). 

Not all patterns of Omitted  values are equally likely. If one can estimate from prior experience the likelihood 

for any pattern of Omitted  values, then this information may be used to decide among different reduced models 

to induce and store. Even if historical data are not sufficient to support accurate estimation of full, joint 

likelihoods, it may be that the marginal likelihoods of different variables being Omitted  are very different. And 

even if the marginal’s are or must be assumed to be uniform, they still may well lead to very different (inferred) 

likelihoods of the many patterns of multiple Omitted  values. In the context of Bayesian network induction, 

Greiner et al. note the important distinction between considering only the underlying distribution for model 

induction/selection and considering the querying distribution as well. Specifically, they show that when 

comparing different Bayesian networks one should identify the network exhibiting the best expected 

performance over the query distribution, that is, the distribution of tasks that the network will be used to answer, 

rather than the network that satisfies general measures such as maximum likelihood over the underlying event 

distribution. H. and F. employ a similar notion to reduce inference time with Bayesian networks. H. and F.  
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precompute parts of the network that pertain to a subset of frequently encountered cases so as to increase the 

expected speed of inference. 

The horizontal, dashed line in Figure 1 shows the performance of pure predictive value imputation for the 

CalHouse data set. The lower of the two curves in Figure 1 shows the performance of a likelihood-based 

reduced-models/imputation hybrid. The hybrid approach allows one to choose an appropriate space-

usage/accuracy tradeoff, and the figure shows that storing even a few reduced models can result in considerable 

improvement. The curve was generated as follows. Given enough space to store k models, the hybrid induces 

and stores reduced models for the top-k most likely Omitted -feature patterns, and uses distribution-based 

imputation for the rest. The Calhouse data set has eight attributes, corresponding to 256 patterns of Omitted  

features. We assigned a random probability of occurrence for each pattern as follows. The frequency of each 

pattern was drawn at random from the unit uniform distribution and subsequently normalized so that the 

frequencies added up to one. For each test instance we sampled a pattern from the resulting distribution and 

removed the values of features specified by the pattern. 

Notice that for the likelihood-based hybrid the marginal improvement in accuracy does not de-crease 

monotonically with increasing model storage: the most frequent patterns are not necessarily the patterns that 

lead to the largest accuracy increases. Choosing the best set of models to store is a complicated optimization 

problem. One must consider not only the likelihood of a pattern of Omitted  features, but also the expected 

improvement in accuracy that will result from including the corresponding model in the ―model base.‖ 

Calculating the expected improvement is complicated by the fact that the patterns of Omitted  values form a 

lattice. For an optimal solution, the expected improvement for a given pattern should not be based on the 

improvement over using the default strategy (e.g., imputation), but should be based on using the next-best 

already-stored pattern. Determining the next-best pattern is a non-trivial estimation problem, and, 
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Figure 1: Accuracies of hybrid strategies for combining reduced modeling and imputation. Storing 

even a small fraction of the possible reduced models can improve accuracy considerably. 
even if it weren't, the optimization problem is hard. Specifically, the optimal set of reduced models M 

corresponds to solving the following optimization task: 

! 
argmaxM   [ p( f )  U( f j M)] 

f 

s:t:    t( fm)    T , 
fm2M 

 
where M is the subset of Omitted  patterns for which reduced models are induced, t( f ) is the (marginal) 

resource usage (time or space) for reduced modeling with pattern f , T is the maxi-mum total resource usage 

allocated for reduced model induction, and U( f jM) denotes the utility from inference for an instance with 

pattern f given the set of reduced models in the subset M (when f 2 M the utility is derived from inference via the 

respective reduced model, otherwise the utility is derived from inference using the next-best already-stored 

pattern).  
The upper curve in Figure 11 shows the performance of a heuristic approximation to a utility-maximizing 
hybrid. We estimate the marginal utility of adding a Omitted -feature pattern f as u( f ) = p( f ) (aˆrm( f ) aˆi( f )), 
where p( f ) is the likelihood of encountering pattern f , aˆrm( f ) is the estimated accuracy of reduced modeling 
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for f and aˆi( f ) is the estimated accuracy of a predictive value imputation model for Omitted  pattern f . We 
estimate aˆrm( f ) and aˆi( f ) based on cross-validation using the training data. The figure shows that even a 
heuristic expected-utility approach can improve considerably over the pure likelihood-based approach. 

 

1.2 Reduced-Feature Ensembles 
The reduced-feature approach involves either on-line computation or the storing of multiple models, and storing 

multiple models naturally motivates using ensemble classifiers. Consider a simple 

Reduced-Feature Ensemble (ReFE), based on a set R of models each induced by excluding a single attribute, 

where the cardinality of R is the number of attributes. Model i 2 R tries to capture an alternative hypothesis that 

can be used for prediction when the value for attribute vi, perhaps among others, is unknown. Because the 

models exclude only a single attribute, a ReFE avoids the combinatorial space requirement of full-blown 

reduced modeling. When multiple values are Omitted , ReFE ensemble members rely on imputation for the 

additional Omitted  values. We employ DBI.  
More precisely, a ReFE classifier works as follows. For each attribute vi a model mi is induced with vi removed 
from the training data. For a given test example in which the values for the set of attributes V are Omitted , for 
each attribute vi 2 V whose value is Omitted , the corresponding model mi is applied to estimate the (probability 
of) class membership. To generate a prediction, the predictions of all models applied to a test example are 
averaged. When a single feature is Omitted , ReFE is identical to the reduced-model approach. The application 
of ReFE for test instances with two or more Omitted  features results in an ensemble. Hence, in order to achieve 
variance reduction as with bagging, in our experiments training data are resampled with replacement for each 
member of the ensemble. 
 
Table 1 summarizes the relative improvements in accuracy as compared to a single model using predictive 

value imputation. For comparison we show the improvements obtained by bagging alone (with imputation), and 

by the full-blown reduced-model approach. For these experiments we fixed the number of Omitted  features to 

be three. The accuracies of ReFE and bagging are also plotted in Figure 2 to highlight the difference in 

performance across domains. Bagging uses the same number of models as employed by ReFE, allowing us to 

separate the advantage that can be attributed to the reduced modeling and that attributable to variance reduction. 

We see that ReFE consistently improves over both a single model with imputation (positive en-tries in the ReFE 

column) and over bagging with imputation. In both comparisons, ReFE results in higher accuracy on all data 

sets, shown in bold in Table 1, except Car; the 14-1 win-loss record is statistically significant with p < 0:01. The 

magnitudes of ReFE's improvements vary widely, but on average they split the difference between bagging with 

imputation and the full-blown reduced modeling. Note that although full-blown reduced modeling usually is 

more accurate, ReFE sometimes shows better accuracy, indicating that the variance reduction of bagging 

complements the (partial) reduced modeling. 
 
The motivation for employing ReFE instead of the full-blown reduced-feature modeling is the substantially 

lower computational burden of ReFE as compared to that of reduced modeling. For a domain with N attributes, 

(2
N
 1) models must be induced by reduced modeling in order to match each possible Omitted  pattern. ReFE 

induces only N models—one for each attribute. For example, the Calhouse data set, which includes only 8 

attributes, required more than one-half hour to produce all the 256 models for full-blown reduced modeling. It 

took about a minute to produce the 8 models for the ReFE. 

 

1.3 Larger Ensembles 
The previous results do not take full advantage of the variance reduction possible with large ensembles. Table 2 

shows the percentage improvement in accuracy over a single model with imputation, for ReFE, bagging with 

imputation, and bagging of reduced models, each using thirty ensemble members. The ReFE ensembles 

comprise 10 reduced models for each Omitted  feature, where each individual model is generated using 

sampling with replacement as in bagging. 

 
 
 
 
 
 

   Reduced 

Data Sets Bagging ReFE Model 



 

910 | P a g e  
 

        
Abalone 0.11 0.26 0.05 

BreastCancer 4.35 4.51 4.62 

Bmg 2.88 3.51 2.57 

CalHouse 1.25 6.06 5.45 

Car 0.10 -0.28 17.55 

Coding 4.82 6.97 5.32 

Contraceptive 0.39 0.45 1.16 

Credit 2.58 5.54 8.12 

Downsize 3.09 3.78 6.51 

Etoys 0.00 2.28 1.07 

Expedia 1.76 2.11 2.73 

Move 3.26 5.99 8.97 

Pendigits 0.06 0.58 1.57 

Priceline 3.29 4.98 10.84 

Qvc 1.83 2.44 2.60 

        
Average 1.98 3.27 5.27 

 
Table 1: Relative improvements in accuracy for bagging with imputation and ReFE, as compared to a single 

model with imputation. Bold entries show the cases where ReFE improves both over using a single model with 

imputation and over bagging with imputation. For compar-ison, the rightmost column shows the improvements 

of full-blown reduced modeling. The ReFEs are more accurate than either a single model with imputation, or 

bagging with im-putation, while being much more efficient than reduced modeling in terms of computation 

and/or storage. 
For control, for any given number of Omitted  features in a test example, we evaluate the performance of 

bagging with the same number of individual models. Similarly, we generate a bagged version of the full-blown 

reduced model, with the same number of models as in the other approaches. As before, we fix the number of 

Omitted  values in each test instance to three. 
As expected, including a larger number of models in each ensemble results in improved perfor-mance for all 

treatments, for almost all data sets. The advantage exhibited by ReFE over bagging with imputation is 

maintained. As shown in Table 2. ReFE results in higher accuracy than bagging with imputation for all 15 data 

sets (statistically significant at p 0:01). 
1.4 ReFEs with Increasing Numbers of Omitted  Values 
For the smaller ensembles, Figure 3 shows the decrease in classification accuracy that results when the number 

of Omitted  values in each test instance is increased. Attributes are chosen for removal uniformly at random. For 

all data sets, the accuracies of all methods decrease as more attributes are Omitted  at prediction time. The 

marginal reductions in accuracy with increasing Omitted  values are similar for ReFE and for bagging with 

imputation, with ReFE's advantage diminishing slowly with increasing Omitted  values. This is in stark contrast 

to the robust behavior of reduced models (also shown in Figure 3). This is because ReFE uses imputation to 

handle additional Omitted values. For the larger ensembles, Figure 4 shows the classification accuracies for 

ReFE, bagging with imputation, and bagging with reduced models, where each ensemble includes 30 models. In 

general, the patterns observed for small ensembles are exhibited for larger ensembles as well. 
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Figure 2: Relative improvement in accuracy (%) as obtained for bagging with imputation and ReFE, with 

respect to a single model with imputation 
 

 Bagging with  Bagging with 

Data Sets Imputation ReFE Reduced Model 

        
Abalone 0.34 0.49 0.83 

BreastCancer 5.10 5.89 5.15 

Bmg 7.22 7.88 8.21 

CalHouse 2.66 7.10 8.47 

Car -0.10 -0.08 17.55 

Coding 14.39 15.28 17.65 

Contraceptive 0.64 0.89 1.03 

Credit 4.98 6.77 9.35 

Downsize 6.91 7.60 11.13 

Etoys 2.95 3.35 3.48 

Expedia 3.41 4.19 5.27 

Move 6.48 9.73 13.78 

PenDigits 0.44 0.90 1.52 

Priceline 7.55 9.42 11.02 

QVC 4.23 5.88 7.16 

        
Average 4.48 5.69 8.11 

 
Table 2: Percentage improvement in accuracy compared to a single model with imputation, for bagging with 

imputation, ReFE, and bagging with reduced models. All ensembles employ 30 models for prediction. Bold 

entries show the cases where ReFE improves both over using a single model with imputation and over bagging 

with imputation. 
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Figure 3: Performance of Omitted  value treatments for small ensemble models as the number of Omitted  

values increases. 

 

Figure 4: Performance of treatments for Omitted  values for large ensemble models as the 

number of Omitted  values increases. 
In sum, while using no more storage space than standard bagging, ReFE offers significantly better performance 

than imputation and than bagging with imputation for small numbers of Omitted  values and hence provides 

another alternative for domains where full-blown reduced modeling (and especially reduced modeling with 

bagging) is impracticably expensive. Thus, in domains in which test instances with few Omitted  values are 

frequent it may be beneficial to consider the use of ReFE, resorting to reduced modeling only for (infrequent) 

cases with many Omitted  values. 

Finally, as desired the ReFE accuracies clearly are between the extremes, trading off accuracy and 

storage/computation. Clearly, ReFE models could be parameterized to allow additional points on the tradeoff 

spectrum, by incorporating more reduced models. As in Section 1.1 we face a difficult optimization problem, 

and various heuristic approximations come to mind (e.g., somehow combining the models selected for storage 

in Section 1.1 ). 

 

II. CONCLUSION 
The obvious drawback to reduced modeling is that it can be expensive either in terms of run time computation 

or storage. We introduced and demonstrated several sorts of reduced-feature hybrids that allow one to manage 

the tradeoff between computation and storage needs or between efficiency and accuracy. Reduced-feature 

hybrids could be applied in various ways. Storage could be allocated to the reduced models that will see the 

most use or provide the most utility, and run-time computation applied for unlikely or less useful missing data 
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patterns. If run-time computation simply is not an option, then storage could be allocated to the most 

advantageous reduced models, and an imputation technique used otherwise. In the former case, the full accuracy 

of reduced modeling is maintained but both storage and run-time requirements are reduced from their extremes. 

In the latter case, accuracy is traded off for decreased storage and/or run time. The results show that even 

heuristic techniques for selecting the most advantageous reduced models can improve accuracy considerably. 

The issue of how best to choose the most advantageous reduced models is open. We also showed how ensemble 

methods can be modified to help deal with missing values—Reduced-Feature Ensembles—incorporating 

different reduced models. 

Researchers and practitioners often face missing values when applying learned models. We hope this study 

provides a valuable step toward understanding how best to deal with them, and why. 
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