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ABSTRACT 

As the cloud computing technology develops during the last decade, outsourcing data to cloud service for storage becomes an 

attractive trend, which benefits in sparing efforts on heavy data maintenance and management. Nevertheless, since the 

outsourced cloud storage is not fully trustworthy, it raises security concerns on how to realize data deduplication in cloud while 

achieving integrity auditing. 

In this work, we study the problem of integrity auditing and secure deduplication on cloud data. Specifically, aiming at achieving 

both data integrity and deduplication in cloud, we propose two secure systems, namely SecCloud and SecCloud
+
. SecCloud 

introduces an auditing entity with a maintenance of a MapReduce cloud, which helps clients generate data tags before uploading 

as well as audit the integrity of data having been stored in cloud. Compared with previous work, the computation by user in 

SecCloud is greatly reduced during the file uploading and auditing phases. SecCloud
+
 is designed motivated by the fact that 

customers always want to encrypt their data before uploading, and enables integrity auditing and secure deduplication on 

encrypted data. 

 

I INTRODUCTION 

Cloud storage is a model of networked enterprise storage where data is stored in virtualized pools of storage which 

are generally hosted by third parties. Cloud storage provides cus-tomers with benefits, ranging from cost saving and 

simplified convenience, to mobility opportunities and scalable service. These great features attract more and more 

customers to utilize and storage their personal data to the cloud storage: according to the analysis report, the volume 

of data in cloud is expected to achieve 40 trillion gigabytes in 2020. 

Even though cloud storage system has been widely adopted, it fails to accommodate some important emerging needs 

such as the abilities of auditing integrity of cloud files by cloud clients and detecting duplicated files by cloud 

servers. We illustrate both problems below. 

The first problem is integrity auditing. The cloud server is able to relieve clients from the heavy burden of storage 

management and maintenance. The most difference of cloud storage from traditional in-house storage is that the data 



 
 
 

 
 

1275 | P a g e  
 

is transferred via Internet and stored in an uncertain domain, not under control of the clients at all, which inevitably 

raises clients great concerns on the integrity of their data. These concerns originate from the fact that the cloud 

storage is susceptible to security threats from both outside and inside of the cloud [1], and the uncontrolled cloud 

servers may Passively hide some data loss incidents from the clients to maintain their reputation. What is more 

serious is that for saving money and space, the cloud servers might even actively and deliberately discard rarely 

accessed data files belonging to an ordinary client. Considering the large size of the outsourced data files and the 

clients’ constrained resource capabilities, the first problem is generalized as how can the client efficiently perform 

periodical integrity verifications even without the local copy of data files. 

 

The second problem is secure deduplication. The rapid adoption of cloud services is accompanied by increasing 

volumes of data stored at remote cloud servers. Among these remote stored files, most of them are duplicated: 

according to a recent survey by EMC [2], 75% of recent digital data is duplicated copies. This fact raises a 

technology namely dedu-plication, in which the cloud servers would like to deduplicate by keeping only a single 

copy for each file (or block) and make a link to the file (or block) for every client who owns or asks to store the 

same file (or block). Unfortunately, this action of deduplication would lead to a number of threats potentially 

affecting the storage system [3][2], for example, a server telling a client that it (i.e., the client) does not need to send 

the file reveals that some other client has the exact same file, which could be sensitive sometimes. These attacks 

originate from the reason that the proof that the client owns a given file (or block of data) is solely based on a static, 

short value (in most cases the hash of the file) [3]. Thus, the second problem is generalized as how can the cloud 

servers efficiently confirm that the client (with a certain degree assurance) owns the uploaded file (or block) before 

creating a link to this file (or block) for him/her. 

In this paper, aiming at achieving data integrity and dedu-plication in cloud, we propose two secure systems namely 

SecCloud and SecCloud
+

. SecCloud introduces an auditing entity with a maintenance of a MapReduce cloud, which 

helps clients generate data tags before uploading as well as audit the integrity of data having been stored in cloud. 

This design fixes the issue of previous work that the computational load at user or auditor is too huge for tag 

generation. For completeness of fine-grained, the functionality of auditing designed in SecCoud is supported on both 

block level and sector level. In addition, SecCoud also enables secure deduplication. Notice that the “security” 

considered in SecCoud is the prevention of leakage of side channel information. In order to prevent the leakage of 

such side channel information, we follow the tradition of [3][2] and design a proof of ownership protocol between 

clients and cloud servers, which allows clients to prove to cloud servers that they exactly own the target data. 

 

Motivated by the fact that customers always want to encrypt their data before uploading, for reasons ranging from 

personal privacy to corporate policy, we introduce a key server into SecCloud as with [4] and propose the 

SecCloud
+

 schema. Besides supporting integrity auditing and secure deduplica-tion, SecCloud
+

 enables the 

guarantee of file confidentiality. Specifically, thanks to the property of deterministic encryption in convergent 
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encryption, we propose a method of directly auditing integrity on encrypted data. The challenge of dedupli-cation on 

encrypted is the prevention of dictionary attack [4]. As with [4], we make a modification on convergent encryption 

such that the convergent key of file is generated and controlled by a secret “seed”, such that any adversary could not 

directly derive the convergent key from the content of file and the dictionary attack is prevented. 

This paper is organized as follows: In Section II, we review the related works on integrity auditing and secure 

deduplica-tion. In Section III, we introduce some background including the bilinear maps and convergent 

encryption. Section IV and Section V respectively proposes the SecCloud and SecCoud
+

 system. Section VI and 

Section VII respectively analyzes the security and efficiency of proposed systems. Finally Section VIII draws the 

conclusion of this paper. 

 

III RELATED WORK 

Since our work is related to both integrity auditing and secure deduplication, we review the works in both areas in 

the following subsections, respectively. 

 

A. Integrity Auditing 

The definition of provable data possession (PDP) was introduced by Ateniese et al. [5][6] for assuring that the cloud 

servers possess the target files without retrieving or downloading the whole data. Essentially, PDP is a probabilistic 

proof protocol by sampling a random set of blocks and asking the servers to prove that they exactly possess these 

blocks, and the verifier only maintaining a small amount of metadata is able to perform the integrity checking. After 

Ateniese et al.’s proposal [5], several works concerned on how to realize PDP on dynamic scenario: Ateniese et al. 

[7] proposed a dynamic PDP schema but without insertion operation; Erway et al. [8] improved Ateniese et al.’s 

work [7] and supported insertion by introducing authenticated flip table; A similar work has also been contributed in 

[9]. Nevertheless, these proposals [5][7][8][9] suffer from the computational overhead for tag generation at the 

client. To fix this issue, Wang et al. [10] proposed proxy PDP in public clouds. Zhu et al. [11] proposed the 

cooperative PDP in multi-cloud storage. 

Another line of work supporting integrity auditing is proof of retrievability (POR) [12]. Compared with PDP, POR not 

merely assures the cloud servers possess the target files, but also guarantees their full recovery. In [12], clients apply 

erasure codes and generate authenticators for each block for verifiability and retrievability. In order to achieve efficient 

data dynamics, Wang et al. [13] improved the POR model by ma-nipulating the classic Merkle hash tree construction for 

block tag authentication. Xu and Chang [14] proposed to improve the POR schema in [12] with polynomial commitment 

for reducing communication cost. Stefanov et al. [15] proposed a 

 

POR protocol over authenticated file system subject to frequent changes. Azraoui et al. [16] combined the privacy-

preserving word search algorithm with the insertion in data segments of randomly generated short bit sequences, and 

developed a new POR protocol. Li et al. [17] considered a new cloud storage architecture with two independent 
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cloud servers for integrity auditing to reduce the computation load at client side. Recently, Li et al. [18] utilized the 

key-disperse paradigm to fix the issue of a significant number of convergent keys in convergent encryption. 

 

B. Secure Deduplication 

Deduplication is a technique where the server stores only a single copy of each file, regardless of how many clients 

asked to store that file, such that the disk space of cloud servers as well as network bandwidth are saved. However, 

trivial client side deduplication leads to the leakage of side channel information. For example, a server telling a 

client that it need not send the file reveals that some other client has the exact same file, which could be sensitive 

information in some case. 

In order to restrict the leakage of side channel information, Halevi et al. [3] introduced the proof of ownership 

protocol which lets a client efficiently prove to a server that that the client exactly holds this file. Several proof of 

ownership protocols based on the Merkle hash tree are proposed [3] to enable secure client-side deduplication. 

Pietro and Sorniotti [19] proposed an efficient proof of ownership scheme by choosing the projection of a file onto 

some randomly selected bit-positions as the file proof. 

Another line of work for secure deduplication focuses on the confidentiality of deduplicated data and considers to make 

deduplication on encrypted data. Ng et al. [20] firstly intro-duced the private data deduplication as a complement of public 

data deduplication protocols of Halevi et al. [3]. Convergent encryption [21] is a promising cryptographic primitive for 

ensuring data privacy in deduplication. Bellare et al. [22] formalized this primitive as message-locked encryption, and 

explored its application in space-efficient secure outsourced storage. Abadi et al. [23] further strengthened Bellare et al’s 

security definitions [22] by considering plaintext distributions that may depend on the public parameters of the schemas. 

Regarding the practical implementation of convergent encryp-tion for securing deduplication, Keelveedhi et al. [4] 

designed the DupLESS system in which clients encrypt under file-based keys derived from a key server via an oblivious 

pseudorandom function protocol. 

As stated before, all the works illustrated above considers either integrity auditing or deduplication, while in this 

paper, we attempt to solve both problems simultaneously. In addition, it is worthwhile noting that our work is also 

distinguished with [2] which audits cloud data with deduplication, because we also consider to 1) outsource the 

computation of tag generation, 2) audit and deduplicate encrypted data in the proposed protocols.
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IV PRELIMINARY 

We now discuss some preliminary notions that will form the foundations of our approach. 

A. Bilinear Map and Computational Assumption 

Definition 1 (Bilinear Map): Let G and GT be two cyclic multiplicative groups of large prime order p. A bilinear 

pairing is a map e : G × G → GT with the following properties: 

• Bilinear: e(g1
a
; g2

b
) = e(g1; g2)

ab
 for all g1; g2 ∈R G and a; b ∈R Zp; 

• Non-degenerate: There exists g1; g2 ∈ G such that e(g1; g2) ≠  1; 

• Computable: There exists efficient algorithm to compute 

e(g1; g2) for all g1; g2 ∈R G. 

The examples of such groups can be found in supersingular elliptic curves or hyperelliptic curves over finite fields, 

and the bilinear pairings can be derived from the Weil or Tate pairings. For more details, see [24]. 

We then describe the Computational Diffie-Hellman prob-lem, the hardness of which will be the basis of the 

security  

 

B. Convergent Encryption 

Convergent encryption [22][23][21] provides data confiden-tiality in deduplication. A user (or data owner) derives a 

convergent key from the data content and encrypts the data copy with the convergent key. In addition, the user 

derives a tag for the data copy, such that the tag will be used to detect duplicates. Here, we assume that the tag 

correctness property [22] holds, i.e., if two data copies are the same, then their tags are the same. Formally, a 

convergent encryption scheme can be defined with four primitive functions: 

 

• KeyGen(F) : The key generation algorithm takes a file content F as input and outputs the convergent key ckF 

of F; 

• Encrypt(ckF ; F) : The encryption algorithm takes the convergent key ckF and file content F as input and outputs the 

ciphertext ctF ; 

• Decrypt(ckF ; ctF ) : The decryption algorithm takes the convergent key ckF and ciphertext ctF as input and 

outputs the plain file F; 

• TagGen(F) : The tag generation algorithm takes a file content F as input and outputs the tag tagF of F. Notice 

that in this paper, we also allow TagGen(·) to generate the (same) tag from the corresponding ciphertext as 

with [22][18]. 
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V SECCLOUD 

In this section, we describe our proposed SecCloud system. Specifically, we begin with giving the system model of 

Sec-Cloud as well as introducing the design goals for SecCloud. In what follows, we illustrate the proposed 

SecCloud in detail. 

3 

 

 

 

 

 

 

 

 

 

Aiming at allowing for auditable and deduplicated storage, we propose the SecCloud system. In the SecCloud 

system, we have three entities: 

• Cloud Clients have large data files to be stored and rely on the cloud for data maintenance and computation. 

They can be either individual consumers or commercial organizations; 

• Cloud Servers virtualize the resources according to the requirements of clients and expose them as storage 

pools. Typically, the cloud clients may buy or lease storage capacity from cloud servers, and store their 

individual data in these bought or rented spaces for future utilization; 

• Auditor which helps clients upload and audit their out-sourced data maintains a MapReduce cloud and acts 

like a certificate authority. This assumption presumes that the auditor is associated with a pair of public and 

private keys. Its public key is made available to the other entities in the system. 

The SecCloud system supporting file-level deduplication includes the following three protocols respectively 

highlighted by red, blue and green in Fig. 1. 

 

1) File Uploading Protocol: This protocol aims at allowing clients to upload files via the auditor. Specifically, the 

file uploading protocol includes three phases: 

• Phase 1 (cloud client → cloud server): client performs the duplicate check with the cloud server to confirm if 

such a file is stored in cloud storage or not before uploading a file. If there is a duplicate, another protocol 

called Proof of Ownership will be run between the client and the cloud storage server. Otherwise, the 

following protocols (including phase 2 and phase 3) are run between these two entities. 

• Phase 2 (cloud client → auditor): client uploads files to the auditor, and receives a receipt from auditor. 



 
 
 

 
 

1280 | P a g e  
 

• Phase 3 (auditor → cloud server): auditor helps generate a set of tags for the uploading file, and send them 

along with this file to cloud server. 

2) Integrity Auditing Protocol: It is an interactive protocol for integrity verification and allowed to be initialized by any 

entity except the cloud server. In this protocol, the cloud server plays the role of prover, while the auditor or client 

works as the verifier. This protocol includes two phases: 

 

• Phase 1 (cloud client/auditor → cloud server): verifier (i.e., client or auditor) generates a set of challenges and 

sends them to the prover (i.e., cloud server). 

• Phase 2 (cloud server → cloud client/auditor): based on the stored files and file tags, prover (i.e., cloud 

server) tries to prove that it exactly owns the target file by sending the proof back to verifier (i.e., cloud client 

or auditor). 

At the end of this protocol, verifier outputs true if the integrity verification is passed. 

3) Proof of Ownership Protocol: It is an interactive protocol initialized at the cloud server for verifying that the 

client exactly owns a claimed file. This protocol is typically triggered along with file uploading protocol to prevent 

the leakage of side channel information. On the contrast to integrity auditing protocol, in PoW the cloud server 

works as verifier, while the client plays the role of prover. This protocol also includes two phases 

• Phase 1 (cloud server → client): cloud server generates a set of challenges and sends them to the client. 

• Phase 2 (client → cloud server): the client responds with the proof for file ownership, and cloud server finally 

verifies the validity of proof. 

 

Our main objectives are outlined as follows. 

• Integrity Auditing. The first design goal of this work is to provide the capability of verifying correctness of the 

remotely stored data. The integrity verification further requires two features: 1) public verification, which al-

lows anyone, not just the clients originally stored the  

3) Proof of Ownership Protocol: The PoW protocol aims at allowing secure deduplication at cloud server. 

Specifically, in deduplication, a client claims that he/she has a file F and wants to store it at the cloud server, where 

F is an existing file having been stored on the server. The cloud server asks for the proof of the ownership of F to 

prevent client unauthorized or malicious access to an unowned file through making cheating claim. In SecCloud, the 

PoW protocol is similar to [3] and the details are described as follows. 

Suppose the cloud server wants to ask for the ownership proof for file F. It randomly picks a set of block identifiers, say IF 

⊆ {1; 2; : : : ; s} where s is the number of blocks in F, for challenge. Upon receiving the challenge set IF , the client first 

computes a short value and constructs a Merkle tree. Note that only sibling-paths of all the leaves with challenged 

identifiers are returned back to the cloud server, who can easily verify the correctness by only using the root of the Merkle 

tree. If it is passed, the user is authorized to access this stored file. 
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VI SECCLOUD
+
 

We specify that our proposed SecCloud system has achieved both integrity auditing and file deduplication. 

However, it cannot prevent the cloud servers from knowing the content of files having been stored. In other words, 

the functionalities of integrity auditing and secure deduplication are only imposed on plain files. In this section, we 

propose SecCloud
+

, which allows for integrity auditing and deduplication on encrypted files. 

 

A. System Model 

Compared with SecCloud, our proposed SecCloud
+

 in-volves an additional trusted entity, namely key server, which 

is responsible for assigning clients with secret key (according to the file content) for encrypting files. This 

architecture is in line with the recent work [4]. But our work is distinguished with the previous work [4] by allowing 

for integrity auditing on encrypted data. 

SecCloud
+

 follows the same three protocols (i.e., the file uploading protocol, the integrity auditing protocol and the 

proof of ownership protocol) as with SecCloud. The only difference is the file uploading protocol in SecCloud
+

 

involves an additional phase for communication between cloud client and key server. That is, the client needs to 

communicate with the key server to get the convergent key for encrypting the uploading file before the phase 2 in 

SecCloud. 

Unlike SecCloud, another design goals of file confidentiality is desired in SecCloud
+

 as follows. accessing the 

content of files. Specially, we require that the goal of file confidentiality needs to be resistant to “dictionary attack”. That 

is, even the adversaries have pre-knowledge of the “dictionary” which includes all the possible files, they still cannot 

recover the target file [4]. 

 

B. SecCloud
+
 Details 

We introduce the system setup phase of SecCloud
+

 as follows. 

• System Setup. As with SecCloud, the auditor initializes the public key pk = (g ; {ui}
t
i=1) and private key sk = , 

where g; u1; u2; : : : ; ut ∈R G. In addition, to preserve the confidentiality of files, initially, the key server 

picks a random key ks for further generating file encryption keys, and each client is assigned with a secret key 

ck for encapsulating file encryption keys. 

Based on the initialized parameters, we then respectively describe the three protocols involved in SecCloud
+

. 

1) File Uploading Protocol: Suppose the uploading file F has s blocks, say B1; B2; : : : ; Bs, and each block Bi 

for i = 1; 2; : : : ; s contains t sectors, say Bi1; Bi2; : : : ; Bit. 

Client computes hF =  Hash(F) by itself. In addition, 
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for each sector Bij of F where i = 1; 2; : : : ; s and j = 1; 2; : : : ; t, client computes its hash hBij = Hash(Bij ). Finally 

(hF ; {hBij }i=1;:::;s;j=1;:::;t) is sent to key server for generating the convergent keys for F. 

Upon receiving the hashes, the key server computes sskF = 

f(ks; hF ) and sskij  = f(ks; hBij ) for i = 1; : : : ; s and 

j = 1; : : : ; t, where ks is the convergent key seed kept at the key server, and f(·) is a pseudorandom function. It is 

worthwhile noting that, 1) We take advantage of the idea of convergent encryption [21][22][23] to make the 

deterministic and “content identified” encryption, in which each “content” (file or sector) is encrypted using the 

session key derived from itself. In this way, different “contents” would result in different ciphertexts, and 

deduplication works. 2) Convergent encryption suffers from dictionary attack, which allows the adversary to recover 

the whole content with a number of guesses. To prevent such attack, as with [4], a “seed” (i.e., convergent key seed) 

is used for controlling and generating all the convergent keys to avoid the fact that adversary could guess or derive 

the convergent key just from the content itself. 3) We generate convergent keys on sector-level (i.e., generate 

convergent keys for each sector in file F), to enable integrity auditing. Specifically, since convergent encryption is 

deterministic, it allows to compute homomorphic signatures on (convergent) encrypted data as with on plain data, 

and thus the sector-level integrity auditing is preserved. 

 

Client then continues to encrypt F sector by sector and uploads the ciphertext to auditor. Specifically, for each 

sector Bij  of  F,  i  = 1; 2; : : : ; s and  j  = 1; 2; : : : ; t, 

client computes  ctBij =  Enc(sskBij ; Bij ), and  sends 

(IDF ; {ctBij }i=1;:::;s;j=1;:::;t) to auditor, where Enc(·) is the symmetric encryption algorithm. The convergent keys sskij 

 

• File Confidentiality. The design goal of file confi-    are encapsulated by client’s secret key ck and directly stored 

dentiality requires to prevent the cloud servers from at the cloud servers. 

 

2) Secure Deduplication: Similarly, we can also define a game between challenger and adversary for secure 

dedupli-cation below. Notice that the game for secure deduplication captures the intuition of allowing the malicious 

client to claim it has a challenge file F through colluding with all the other clients not owning this file. 

• Setup Phase. A challenge file F with fixed length and minimum entropy (specified in system parameter) is 

randomly picked and given to the challenger. The challenger continues to run a summary algorithm and 

generate a summary sumF . 

• Learning Phase. Adversary F can setup arbitrarily many client accomplices not exactly having F and have 

them to interact with the cloud servers to try to prove the ownership of file F. Notice that in the learning 



 
 
 

 
 

1283 | P a g e  
 

phase, the cloud server plays as the honest verifier with input sum sumF and the accomplices could follow any 

arbitrary protocol set by A. 

The verification for a different file F
′
, it implies a collision of hash function used in the construction of Merkle Hash 

Tree. Based on the assumption of the collusion-free, this happens on with negligible probability. 

To construct a simulator, that given g; g˜ = g , h, where is unknown, outputs h . In the setup phase, the simulator sets 

v as g˜, chooses two vectors of randomness 1; : : : ; t ∈ Zp and 1; : : : ; t ∈ Zp, and sets uj = g 
j
 h 

j
 for j = 1; : : : ; t. It 

additionally initiates an empty hash tables H-table and simulates the random oracle queries as follows. 

When a hash query of Bi comes and an entry (Bi; ri) exists in the hash-table for some random value ri, the simulator 

just returns gi
r
. When a query of a new Bi that has not been queried, the simulator performs the following steps. 

Firstly, it randomly chooses a value ri from Zp and puts (Bi; ri) in the Hash table H-table and returns Hash(Mi) = g
ri

 

The simulator also needs to simulate the Uploading Oracle. Specifically, for a query of file F to be uploaded, the 

simulator 

• Challenge Phase. The exact proof of ownership pro- computes the hash values and constructs Merkle Hash Tree 

to col is executed. Specifically, the challenger outputs a root R from the file. The proof is very similar to [17] 

and challenge to A and A responses with a proof based on its learnt knowledge. If A’s proof is accepted by the 

cloud server, we say A succeeds. 

The security in terms of secure deduplication is achieved, if for all probabilistic polynomial-time adversaries A, the 

prob-ability that A succeeds in the above experiment is negligible. 

 

B. Security Proof 

Theorem 1: Assume that the CDH problem is a hard prob-lem. Then, the proposed public-verifiable PoR scheme 

satisfies the soundness. That is, no adversary could generate an integrity proof for any file such that the verifier 

accepts it with non-negligible probability. 

Proof: We prove the soundness of the construction by reduction. Firstly, assume there is an adversary who can break 

the soundness with non-negligible probability. We show that how to construct a simulator to break the 

computational Diffie-Hellman problem through interacting with the adversary. During this phase, the simulator is 

required to answer all the queries as the real application. 

In more details, the simulator has to answer the tag genera-tion and integrity proof queries from the adversary. After 

the simulation, if the adversary outputs a valid tag that is not from client, the simulator can use this algorithm to 

solve the CDH problem. Notice that the simulation for the n slave nodes can be reduced to just one node because of 

the assumption that all the slave nodes are honest-but-curious and they will not collude. More clearly, the master key 

can be split to n sub-keys by choosing n − 1 random values and assigned to slave nodes as the corresponding private 

keys, while the n-th node is assigned the key of minus the sum of these random values. 
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Suppose that there exists an adversary who can generate the correct description of a prover. Denote F = (B1; : : : ; 

Bt) as the file for integrity verification, Φ = { i}1≤i≤t as the signatures of blocks, and the set Q = {(i; ci)}i∈IF as the 

query. Denote by R the root generated from the file F. If the adversary can generate a correct root R from F which 

passes omitted here. The adversary can also start the query for the integrity proof. When an oracle query of a file 

tag, the simulator just starts an honest protocol with the adversary for the simulation. 

After the above simulation, the adversary outputs a forgery of a valid signature 
′
 = ̸  satisfying the verification. 

Similar to the security analysis in [17], the simulator can compute and 

 

s 
  1  

get the value h 

 t  

as the = ( 
′  −1

v
−

 
∑

j=1 j 
∆

 j ) 
∑

j=1 j ∆ j 

solution to the given CDH instance.                  

  Theorem 2: An extractor can be constructed to recover the file in time O(n
2
(s + 1) + (1 +  n

2
)n=!) for well 

behaved -admissible prover by running O(n=!) interactions on a n- block file with ! = − 1=p − ( n=n − c + 1)
c
. 

Actually, such an extractor can be constructed to get correct proof for the verification queries in the protocol. With 

the combinatorial techniques, we can easily get the result that a -fraction of encoded file blocks can be retrieved 

after at most O(n=!) interactions. Based on the rate- error correcting codes, all the file blocks are able to be 

recovered. The security model for the integrity verification protocol is the same as in Shacham and Waters’ PoR 

model. Thus, the simulation for extracting the original file is similar to that in [12][17], which is omitted here. 

By combining Theorem 1 and Theorem 2, we can directly have the following theorem. 

Theorem 3: The proposed PoR construction is ( ; )-sound for any -admissible prover where = 1 − (1 − 1=p)
logn+1

 + 

1=p. 

Regarding the file confidentiality of SecCloud
+

, we have the following theorem. 

Theorem 4: The proposed SecCloud
+

 achieves confiden-tiality of file with the assumption that the adversary is not 

allowed to collude with the key server. 

Proof: In our construction, a key server is introduced to generate the convergent key and hash values for the duplicate 

check. Without the private key stored at the key server, no adversary can generate a valid convergent key for any file with 

 

Non-negligible probability. Thus, for the cloud storage server, without the help of key server, it cannot launch the 

brute force attack because the underlying hash value over the file is a valid message authentication code. 

Furthermore, all the data has been encrypted before they are outsourced. The data is encrypted with the traditional 

symmetric encryption scheme and the key is generated by the key server. The convergent key is encrypted by another 

master key and stored in the cloud server. The convergent key has been computed from both the file and private key of the 

key server, which means that the convergent key is not deterministic only in terms of the file. Even if the file is 
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predictable, the adversary cannot guess the file with brute-force attack if the adversary is not allowed to collude with the 

key server.  

Because we used the PoW technique, based on the assump-tion of secure PoW scheme, any adversary without the 

file can-not convince the cloud storage server to get the corresponding access privilege. Thus, our deduplication 

system is secure in terms of the security model. 

 

VII. PERFORMANCE ANALYSIS 

In this section, we will provide a thorough experimental evaluation of our proposed schemes. We build our testbed 

by using 64-bit t2.Micro Linux servers in Amazon EC2 platform as the auditing server and storage server. In order 

to achieve = 80 bit security, the prime order p of the bilinear group G and GT are respectively chosen as 160 and 512 

bits in length. We also set the block size as 4 KB and each block includes 25 sectors. 

 

SIZE OF FILE (MB) 

 

Fig. 5. Tag Generation 

 

Fig. 5 shows the time cost of slave node in MapReduce for generating file tags. It is clear the time cost of slave node is 

growing with the size of file. This is because the more blocks in file, the more homomorphic signatures are needed to be 

com-puted by slave node for file uploading. We also need to notice that there does not exist much computational load 

difference between common slave nodes and the reducer. Compared with the common slave nodes, reducer only 

additionally involves in a number of multiplications, which is lightweight operation. It is worthwhile noting that, the 

procedure of tag generation (the phase 2 and 3 in file uploading protocol) could be handled in  Preprocessing, and it is 

not necessary for client to wait until uploading file. 

Before examine the time cost of file auditing, we need to firstly make analysis and identify the number of 

challenging blocks (i.e., |IF |) in our integrity auditing protocol. According to [5], if fraction of the file is corrupted, 

through asking the proof of a constant m blocks of this file, the verifier can detect the misbehavior with probability = 

1 − (1 − )
m

. To capture the spirit of probabilistic auditing, we set the probability confidence = 70%; 85% and 99%, 

and draw the relationships between and m in Fig. 6. It demonstrates that if we want to achieve low (i.e., 70%), 

medium (i.e., 85%) and high (i.e., 99%) confidence of detecting any small fraction of corruption, we have to 

respectively ask for 130; 190 and 460 blocks for challenge. 
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Fig. 7. File Auditing 

Now, we come back to evaluate the time cost of file auditing in Fig. 7, which shows the time cost of auditing for detecting 

the misbehavior of cloud storage respectively with 70%; 85% and 99% confidence. Obviously, as the growth of the 

number of blocks for challenge (to guarantee higher confidence), the time cost for response from cloud storage server is 

increasing. This is because it needs to compute all the exponentiations for each challenge block as well as the coefficient 

for each column  of S. Correspondingly, the time cost at auditor grows with the number of challenge blocks as well. But 

compared with cloud storage, the rate is slightly lower, because auditor only needs to aggregate the homomorphic 

signature of the challenged blocks. 

 

VIII. CONCLUSION 

Aiming at achieving both data integrity and deduplication in cloud, we propose SecCloud and SecCloud
+

. SecCloud 

in-troduces an auditing entity with maintenance of a MapReduce cloud, which helps clients generate data tags before 

uploading as well as audit the integrity of data having been stored in cloud. In addition, SecCoud enables secure 

deduplication through introducing a Proof of Ownership protocol and pre-venting the leakage of side channel 

information in data dedu-plication. Compared with previous work, the computation by user in SecCloud is greatly 

reduced during the file uploading and auditing phases. SecCloud
+

 is an advanced construction motivated by the fact 

that customers always want to encrypt their data before uploading, and allows for integrity auditing and secure 

deduplication directly on encrypted data. 
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