

1409 | P a g e

SECURE AUDITING AND DATA DEDUPLICATING

IN CLOUD USING SECCLOUD AND SECCLOUD+

Shaik Abdul Yunus Basha
1
 , Reddy Harika

2
,

K.Varalakshmi
3
,Syed Iliyaz

4

ABSTRACT

Cloud Computing is an emerging field of technology that relies on sharing of resources over the Internet to

achieve economy of scales. It has gained momentum among both individuals and corporate sectors due to a

variety of applications such as ease of administration, mobility and collaboration, reduction of hardware and

licensing cost, and scalability .Cloud computing technology provide a large number of services. One of the

attractive service is storing huge amount of data in cloud. But the data stored in cloud is not fully trustworthy.

To provide secure concerns , we propose two systems seccloud and seccloud+.

Sec cloud will provide integrity audit and prevent duplicate files uploading into cloud. Seccloud+ enables

integrity auditing and secure deduplication along with encrypting the data before uploading the file. These two

systems will prevent multiple copies of a file uploading into the file and provide data integrity . seccloud will

maintain map reduce cloud to create a tag to the file before uploading into cloud. Here we prevent the problem

of integrity auditing and deduplication . seccloud+ is the advancement of seccloud. A third party has been

introduced which involves MD5 algorithm to provide users a convergent encryption before uploading as well

as auditing the integrity of data by means of hash key that have being uploaded and stored in cloud. When

Relate to earlier work, user computation is greatly reduced in the process of uploading and auditing file. The

other expertise called Secured cloud plus is used to encrypt the data before uploading, and auditing The trusted

3rd party security service provider would not storeany data at its end, and its only connected to providing

security service. The application or software will provide data integrity verfication by using hashing

algorithm like SHA-1, provided encryption/decryption using symmetric algorithm like AES

Keywords: Cloud computing, Data integrity, Auditing, Data deduplication.

I. INTRODUCTION

Now a days vendors and organizations centring mainly on cloud due to its flexibility and tranquillity of

uploading and attainment of the data. Many Companies have undertaken different and exclusive innovations on

concept of cloud .There by, cloud has become a trending technology in the process of storing and manipulating

the data for the huge number of user and organizations. Data processing is carried out by login scenario. In case

of sensitivity of the information, authentication is carried out to give access to right user. This

process will helps in process of providing rights, in the sense some of the files are read only, write and some are

both in authenticated way by the authenticated person can precede over the data. There are many mechanisms to

have Files interpretation called encryption techniques which help to convert plain text to cypher text in order to

1410 | P a g e

have security of the data in the file to be upload. Cloud possesses benefits such as efficiency, storage capacity,

source provider, data getter ,resource pooling etc. All this capabilities made cloud as magnificent storage zone

from individual user to huge organizations. Cloud is able to store bulk amount of data like Tera Byte or peta

bytes etc., even then if duplication of redundant will cause over heading effect on cloud server so some

mechanisms has to be introduced to avoid the duplication and also enable the integrity of the data

1.1 What is cloud computing?

Cloud computing is the use of computing resources (hardware and software) that are delivered as a service over

a network (typically the Internet). The name comes from the common use of a cloud-shaped symbol as an

abstraction for the complex infrastructure it contains in system diagrams. Cloud computing entrusts remote

services with a user's data, software and computation. Cloud computing consists of hardware and software

resources made available on the Internet as managed third-party services. These services typically provide

access to advanced software applications and high-end networks of server computers.

1.2 How Cloud Computing Works?

The goal of cloud computing is to apply traditional supercomputing, or high-performance computing power,

normally used by military and research facilities, to perform tens of trillions of computations per second, in

consumer oriented applications such as financial portfolios, to deliver personalized information, to provide data

storage or to power large, immersive computer game The cloud computing uses networks of large groups of

servers typically running low-cost consumer PC technology with specialized connections to spread data-

processing chores across them. This shared IT infrastructure contains large pools of systems that are linked

together. Often, virtualization techniques are used to maximize the power of cloud computing

Fig: Structure of Cloud Computing

II PREPHASE

At first idea of avoiding redundant duplication of data in cloud was illustrated by „At eniese‟ which involves in

heavy computational over heading at both client (user) side and server side. This idea involves comparing of

Meta data of the files stored either client end or server end before uploading. Both server and client contains this

1411 | P a g e

Meta data, it gets compared to the Meta data generated during each upload. During this process of generation of

the Meta data client has to give privacy terms and credentials to each and every file access. No issue will arrive

if the cloud is trusted one, In case of malicious or scrawny it may leads to hacking and distraction of the

uploaded data or files. That‟ s why trust on the cloud has become a big issue. Therefore avoiding of redundant

duplicates by this phenomenon is risky. The other

issue related with this phenomenon is lot of Meta data generation which leads in increase of size of Meta data

more than plain text, this result in wastage and increase in cost of cloud. Hence the phenomenon is not

significant for avoiding redundant duplication of data. In addition, cause in risk of preservation and storing of

data also involves in unreliability ,over heading, degradation of performance, time consuming and slow down of

process. Apart from this, mechanism stands as detector and eliminator of the duplicates To have impact on the

above issues method call “secureauditing” has been introduced which acts a third party trusted server. And also

act as a mediator between client and server named as „auditor‟ . This idea concentrate on correctness property

called “name of correctness”, that means two files namely f1, f1 should contain same data i.e., if data in file

f1has “Cloud is an outstanding technology”, the other file of same name f1 should also contain same data i.e.,

“Cloud is an outstanding technology”. This method will not work practically, In case of large organizations the

names of files may be on the bases of subject of the data stored in the file, in some conditions it may be same.

When coming to individual client the percentage of storing files with same name is high so that this idea fails in

single client prospective. Every individual have their own perception end view in choosing name of a files.

Under those conditions this method gives worst case performance in avoiding duplicate data, which in

turn results in wastage of space in cloud zone. Here sever which act as auditor, fails drastically to stop the

entering of duplicate data. Even then this auditor plays a vital role for the large organization due to subject

based naming to the files. So this method of avoiding duplicates is greatly admired in cloud for the technology

of duplicate eliminator. Here one more problem will come across i.e, files with different name contain same

data also stores in cloud which in turn results in wastage of memory and also causes time waste in the process

of storing. To have brief knowledge about this lets have a good example, if a user has uploaded a file named as

f1 and contain a content “hello welcome to computer”, at the same if another user uploaded a file named as f2

with the same content “hello welcome to computer”, auditor will audit filenames and store the files because

their names are different here wastage of memory in cloud will takes place. There by it provides service which

is unreliable based on names .This auditing involves two technique called secured cloud and securedcloudplus

2.1 Advantages

Integrity Auditing

Cloud Storage move the user data to large data centres, which are remotely located ,which causes constant data

movements. During this process of uploading and downloading, the data could deliberately be tampered or get

corrupt in between. Due to this there is a lot of security issues as the user don’t have control over it. Here with

the help of our system, we will check the correctness of the data

1412 | P a g e

De-Duplication

De-Duplication identifies and manages duplicate files in the cloud [6].As it happens with everybody; we at

times upload the same file multiple times [2] Also the same file can be uploaded by different users[4]. Due to

this there is the duplication of file, resulting in wastage the scarce storage resource [4] De-Duplication ensures

duplicate data [6] is physically stored only once, and the proof of ownership of the with complete transparency

provided to genuine owners

Fig: Data Deduplication Process

Secured Data

The data being stored in the cloud isin an encrypted form to ensure standard security being provided [4].This

helps to resist unauthorized users the access to sensitive and personal data [2] [7]. Also security is the major and

important factor while storing data in cloud because the user once uploaded the data don’t have any rights or

authority on that file [7]

III LITERATURE SURVEY

1. A Survey on “Secure and Constant Cost Public Cloud Storage Auditing with Deduplication”

 Data integrity and storage efficiency are two important requirements for cloud storage. Proof of Retrievability

(POR) and Proof of Data Possession (PDP) techniques assure data integrity for cloud storage. Proof of

Ownership (POW) improves storage efficiency by securely removing unnecessarily duplicated data on the

storage server. However, trivial combination of the two techniques, in order to achieve both data integrity and

storage efficiency, results in non-trivial duplication of metadata (i.e., authentication tags), which contradicts

the objectives of POW. Recent attempts to this problem introduce tremendous computational and

communication costs and have also been proven not secure. It calls for a new solution to support efficient and

secure data integrity auditing with storage deduplication for cloud storage. In this paper we solve this open

problem with a novel scheme based on techniques including polynomial-based authentication tags and

homomorphic linear authenticators. Our design allows deduplication of both files and their corresponding

authentication tags. Data integrity auditing and storage deduplication are achieved simultaneously. Our

proposed scheme is also characterized by constant realtime communication and computational cost on the user

1413 | P a g e

side. Public auditing and batch auditing are both supported. Hence, our proposed scheme outperforms existing

POR and PDP schemes while providing the additional functionality of deduplication. We prove the security of

our proposed scheme based on the Computational Diffie-Hellman problem, the Static Diffie-Hellman problem

and the t-Strong Diffie-Hellman problem. Numerical analysis and experimental results on Amazon AWS show

that our scheme is efficient and scalable.

2. A Survey on “DupLESS: Server-Aided Encryption for Deduplicated Storage”

 Cloud storage service providers such as Drop box, Mozy, and others perform deduplication to save space by

only storing one copy of each file uploaded. Should clients conventionally encrypt their files, however, savings

are lost. Message-locked encryption (the most prominent manifestation of which is convergent encryption)

resolves this tension. However it is inherently subject to brute-force attacks that can recover files falling into a

known set. We propose an architecture that provides secure deduplicated storage resisting brute-force attacks,

and realize it in a system called DupLESS. In DupLESS, clients encrypt under message-based keys obtained

from a key-server via an oblivious PRF protocol. It enables clients to store encrypted data with an existing

service, have the service perform deduplication on their behalf, and yet achieves strong confidentiality

guarantees. We show that encryption for deduplicated storage can achieve performance and space savings close

to that of using the storage service with plaintext data.

3. A Survey on “Scalable and Efficient Provable Data Possession”

 Storage outsourcing is a rising trend which prompts a number of interesting security issues, many of which

have been extensively investigated in the past. However, Provable Data Possession (PDP) is a topic that has

only recently appeared in the research literature. The main issue is how to frequently, efficiently and securely

verify that a storage server is faithfully storing its client’s (potentially very large) outsourced data. The storage

server is assumed to be untrusted in terms of both security and reliability. (In other words, it might maliciously

or accidentally erase hosted data; it might also relegate it to slow or off-line storage.) The problem is

exacerbated by the client being a small computing device with limited resources. Prior work has addressed this

problem using either public key cryptography or requiring the client to outsource its data in encrypted form.

 In this paper, we construct a highly efficient and provably secure PDP technique based entirely on symmetric

key cryptography, while not requiring any bulk encryption. Also, in contrast with its predecessors, our PDP

technique allows outsourcing of dynamic data, i.e, it efficiently supports operations, such as block modify-

cation, deletion and append

1414 | P a g e

IV SYSTEM ARCHITECTURE

Fig: Sequence Flow of System Architecture

There are three main entities in the system

Client user, Cloud Server and the Auditor. The user directly interacts with the Cloud by registration,

authentication [11], upload and download. The Cloudsystem generates hash value for each file being uploaded

and stores the same. [9] The Cloud system checks for duplicate data items in cloud on the basis of their hash

value and notifies and sends deduplication request to the Auditor [11] The Auditor interacts with the Cloud

system only [11]. Upon receiving the deduplication request, it performs suitable action over it. Through GUI the

user will interact with the system. It GUI allows the use of icons or other visual indicators to interact with users.

There is a database in the back end with the cloud which handle all thMD5 algorithm: Hashing is done to

generate a unique hash value for each data item being uploaded [12]. This hash value is used for auditing

purpose to identify duplicate files[8] The same hash value is used as checksum to ensure crucial

Fig:System Architecture

1415 | P a g e

V ALGORITHM

AES AGORITHM

Broadly speaking the encryption/decryption can be done via symmetric key or asymmetric key. In symmetric

algorithms, both parties share the secret key for both encryption/decryption, and from privacy perceptive it is

important that this key is not compromised, because cascading data will then be compromised. Symmetric

encryption/decryption require less power for computation. On the other hand asymmetric algorithms use pairs

of keys, of which one key is used for encryption while other key is used for decryption.

Generally the private key is kept secret and generally held with the owner of data or trusted 3rd party for the

data, while the public key can be distributed to others for encryption. The secret key can't be obtained from the

public key. In our case since the encryption/decryption is performed on trusted 3rd party server, symmetric key

is used, and it delegates the burden of key management to the trusted 3rd party. If key management where to be

done at clients end it would mean,

1. either they have to remember the big key

2. store the key in all devices/machine which will be used to access the cloud services, which make user device

a bottleneck.

3. individual owner has to take the responsibility of sharing the key with specic authorized group of user which

he/she dene.

Outline of the AES Algorithm

Constants: intNb = 4; // but it might change someday

int Nr = 10, 12, or 14; // rounds, for Nk = 4, 6, or 8

Inputs: array in of 4*Nb bytes // input plaintext

array out of 4*Nb bytes // output ciphertext

array w of 4*Nb*(Nr+1) bytes // expanded key

Internal work array: state, 2-dim array of 4*Nb bytes, 4 rows and Nb cols

Algorithm:

void Cipher(byte[] in, byte[] out, byte[] w) f

byte[][] state = new byte[4][Nb];

state = in; // actual component-wise copy

AddRoundKey(state, w, 0, Nb - 1); // see Section 4 below

for (int round = 1; round < Nr; round++) f

SubBytes(state); // see Section 3 below

ShiftRows(state); // see Section 5 below

MixColumns(state); // see Section 5 below

AddRoundKey(state, w, round*Nb, (round+1)*Nb - 1); // Section 4

gSubBytes(state); // see Section 3 below

ShiftRows(state); // see Section 5 below

1416 | P a g e

20 AddRoundKey(state, w, Nr*Nb, (Nr+1)*Nb - 1); // Section 4out = state; // component-wise copy

Fig: Sequence of AES Algorithm

MD 5 ALGORITHM

Fig: MD5 Algorithm sequence

MD5 algorithm , It generates 16bit hash key to the file positioned for encryption. At the same time user

generates a master key for the file to have authenticated access by which file can be downloaded and decrypted.

The successful encrypted file is uploaded to the auditor. Insegment1 this job is carried out. Coming to redundant

duplication, hash code generated by MD5 in background for every encryption is sorted and maintained by the

auditor. Here the speciality of MD5 is generating hash code for the file irrespective of names. This hash code

helps the manager to cross check hashes for each and every time. This method also use to store some hash code

even then it doesn‟ t leads to over heading on manager i.e, auditor end, this is because the hash code generated

by MD5 algorithm is 16 characters key, are same for even 1000 characters file. This hash code even differs

even if one character in the file differ. So MD5 is a highly strengthened idea for redundant duplication. There

by this hash stored in auditor for the each file will decide whether to traverse the file or not to the cloud. Here

1417 | P a g e

by it reduces and replaces the traditional idea of comparing the file names for the existence in cloud. Here vital

role is played by the auditor to compare and cross check content of the file data. In regular interval of time the

auditor often logs in to have a check for replication to avoid duplicates. According to auditor observation if the

same content of the files are keep on outsourced then it leads to wastage of cloud space which cause impact on

over heading and performance of cloud and drain the efficiency of the cloud. All the current hash code of the

file is cross check with the existing code . Memory constraints will not be affected by the key stored. Memory

consumed by just128 bit will not occupy heavy space in the audit dynamo, Therefore MD5 hashing technic

gives very less over heading which is not a very big deal. Here hash code comparison is not at all carried out by

the client end nor does cloud server, it is done separate by the third party server called auditor .No the client

server or cloud server is responsible for the generation of the hash code even for storing and comparing.

Consequently this method is more accurate and reliable way of auditing and monitoring the redundant

duplicates, nonredundant in cloud. As cloud cost for storing the data with repetition of file leads to wastage of

money to the client. If file is very small then repetition is considerable, if it is in terabytes or peta bytes

repetitions is not suggestible

A. Public Key Generation

For each and every current input of client a random unique key is generated known as public key. This key is

generated for every login and key is very much essential for access of cloud. Next client upload the file f1 and

call for encryption to encrypt, let the encrypted file be f2, cliental ways want to secure the data so uploads the

encrypted file. Input (f1, f2) Upload ()

In this process cypher texted file taken as input and ask the client for desired name to upload the file, The name

of the file is displayed in the list of file

B. Hash Key Generation

Here MD5 is used which runs on back ground of auditor.This MD5 generates 16 char hash key Auditor will

performall the process of finding duplications and store the key in the log for future checking.

C. Redundant Duplication

Here comparing of hash key for the new hash

INPUT (F1, F2)

DES (F1, F2) =£1,£2;

MD5 (F1, F2) =f1#,f2#;

UPLOAD ((£1, f1#) ∩ (£2, f2#));

 V SECCLOUD

In this subsection, we respectively describe the three protocols including file uploading protocol, integrity

auditing protocol and proof of ownership protocol in SecCloud. Before our detailed elaboration, we firstly

introduce the system setup phase of SecCloud, which initializes the public and private parameters of the system.

1418 | P a g e

 System Setup: The auditor working as an authority picks a random integer _ ∈ R Zp as well as random

elements g; u1; u2; : : : ut ∈ R G, where t specifies the maximum number of sectors in a file block. The secret

key sk is set to be _ and kept secret, while the public key pk = (g_; {ui}t i=1) is displayed to other entities

File Uploading Protocol: Based on the public and private keys generated in system setup, we then describe the

file uploading protocol. Suppose the uploading file F has s blocks: B1;B2; : : : ;Bs, and each block Bi for i = 1;

2; : : : ; s contains j sectors: Bi1;Bi2; : : : ;Bij. Let n be the number of slave nodes in the MapReduce cloud. The

client runs the deduplication test by sending hash value of the file Hash (F) to the cloud server. If there is a

duplicate, the cloud client performs Proof of Ownership protocol with the cloud server which will be described

later. If it is passed, the user is authorized to access this stored file without uploading the file. Otherwise (in the

second phase), the cloud client uploads a file F as well as its identity IDF to the distributed file system in

MapReduce auditing cloud, and simultaneously sends an “upload” request to the master node in MapReduce,

which randomly picks {_i}ni =1 such that Σn i=1 _i = _ and assigns the ith slave node with _i. When each slave

node (say the ith salve node) receives the assignment _i, it does two steps: 1) Pick up (IDF;F) in the distributed

file system in MapReduce, and build a Merkle hash tree on the blocks {Bj}sj=1 of F. 2) Let hroot denote the

hash of the root node of Merkle hash tree built on F. This slave node uses _i to sign hroot by computing _i =

h_iroot. Finally, the signature _i is sent to the the slave node which is specified by master node for executing the

reducing procedure. The specified slave node for reducing procedure gathers all the signatures {_i} ni =1 from

the other slave nodes, and computes _ = Πn i=1 _i. The “reduced” signature _ is finally sent back to client as

receipt of the storage of file F. In the third phase, the MapReduce auditing cloud starts to upload the file F to

cloud server. To allow public auditing, the master node builds file tags of F. Specifically, master node firstly

writes and arranges all the sectors of F in a matrix (we say S), and computes a homographic signature for each

row of the matrix S (highlighted red in Fig. 3). Notice that the tag generation procedure also follows the

computing paradigm with MapReduce. That is, for the ith (i = 1; 2; : : : ; s) row of S, the jth (j = 1; 2; : : : ; n)

slave node computes _ij = [Hash(IDF||Bi) Πt k=1 uBik k]_j , where Σn j=1 _j = _. Accordingly, all the

signatures {_ij} nj =1 are then multiplied into the homomorphic signature _i = Πn j=1 _ij at a specified

reducing slave node. The homomorphic signature allows us to in future aggregate the signatures signed on the

sectors in the same column of S using multiplication. Finally, the master node uploads (ID;F; {_i}si =1) to

cloud server.

Integrity Auditing Protocol:

In the integrity auditing protocol, either the MapReduce auditing cloud or the client works as the verifier. Thus,

without loss of generality, in the rest of the description of this protocol, we use verifier to identify the client or

MapReduce auditing cloud. The auditing protocol is designed in a challenge-response model. Specifically, the

verifier randomly picks a set of block identifiers (say IF) of F and asks the cloud server (working as prover) to

response the blocks corresponding to the identifiers in IF. In order to keep randomness in each time of

challenge, even for the same IF, we introduce a random coefficient for each block in challenge. That is, for each

identifier i ∈ IF, the coefficient ci for the block identified by i is computed as ci = f (tm||IDF||i), where f(·) is a

1419 | P a g e

pseudorandom function and tm is the current time period. Finally, C = {(i; ci)}i∈ IF is sent to cloud server for

challenge.

 Proof of Ownership Protocol:

The POW protocol aims at allowing secure deduplication at cloud server. Specifically, in deduplication, a client

claims that he/she has a file F and wants to store it at the cloud server, where F is an existing files having been

stored on the server. The cloud server asks for the proof of the ownership of F to prevent client unauthorized or

malicious access to an unowned file through making cheating claim. In SecCloud, the POW protocol is similar

to [3] and the details are described as follows. Suppose the cloud server wants to ask for the ownership proof for

file F. It randomly picks a set of block identifiers, say IF ⊆ {1; 2; s} where s is the number of blocks in F, for

challenge. Upon receiving the challenge set IF, the client first computes a short value and constructs a Merkle

tree. Note that only sibling-paths of all the leaves with challenged identifiers are returned back to the cloud

server, who can easily verify the correctness by only using the root of the Merkle tree. If it is passed, the user is

authorized to access this stored file.

VI SECCLOUD+

We specify that our proposed SecCloud system has achieved both integrity auditing and file deduplication.

However, it cannot prevent the cloud servers from knowing the content of files having been stored. In other

words, the functionalities of integrity auditing and secure deduplication are only imposed on plain files. In this

section, we propose SecCloud+, which allows for integrity auditing and deduplication on encrypted files.

A. System Architecture

Compared with SecCloud, our proposed SecCloud+ involves an additional trusted entity, namely key server,

which is responsible for assigning clients with secret key (according to the file content) for encrypting files.

This architecture is in line with the recent work [4]. But our work is distinguished with the previous work [4] by

allowing for integrity auditing on encrypted data. SecCloud+ follows the same three protocols (i.e., the file

uploading protocol, the integrity auditing protocol and the proof of ownership protocol) as with SecCloud. The

only difference is the file uploading protocol in SecCloud+ involves an additional phase for communication

between cloud client and key server. That is, the client needs to communicate with the key server to get the

convergent key for encrypting the uploading file before the phase 2 in SecCloud. Unlike SecCloud, another

design goals of file confidentiality is desired in SecCloud+ as follows.

 File Confidentiality:

The design goal of file confidentiality requires to prevent the cloud servers from accessing the content of files.

Specially, we require that the goal of file confidentiality needs to be resistant to “dictionary attack”. That is,

even the adversaries have preknowledge of the “dictionary” which includes all the possible files, they still

cannot recover the target file [4].

1420 | P a g e

B. SecCloud+ Details We introduce the system setup phase of SecCloud+ as follows.

System Setup:

 As with SecCloud, the auditor initializes the public key pk = (g_; {ui}t i=1) and private key sk = _, where g;

u1; u2; : : : ; ut ∈ R G. In addition, to preserve the confidentiality of files, initially, the key server picks a

random key k for further generating file encryption keys, and each client is assigned with a secret key ck for

encapsulating file encryption keys. Based on the initialized parameters, we then respectively describe the three

protocols involved in SecCloud+.

 File Uploading Protocol:

Suppose the uploading file F has s blocks, say B1;B2; : : : ;Bs, and each block Bi for i = 1; 2; : : : ; s contains t

sectors, say Bi1;Bi2; : : : ;Bit.Client computes hF = Hash(F) by itself. In addition, for each sector Bij of F where

i = 1; 2; : : : ; s and j = 1; 2; : : : ; t, client computes its hash hBij = Hash(Bij). Finally (hF;

{hBi}i=1;:::;s;j=1;:::;t) is sent to key server for generating the convergent keys for F. Upon receiving the

hashes, the key server computes sskF = f(ks; hF) and sskij = f(ks; hBij) for i = 1; : : : ; s and j = 1; : : : ; t, where

ks is the convergent key seed kept at the key server, and f(·) is a pseudorandom function. It is worthwhile

nothing that, 1) We take advantage of the idea of convergent encryption [21][22][23] to make the deterministic

and “content identified” encryption, in which each “content” (file or sector) is encrypted using the session key

derived from itself. In this way, different “contents” would result in different cipher texts, and deduplication

works. 2) Convergent encryption suffers from dictionary attack, which allows the adversary to recover the

whole content with a number of guesses. To prevent such attack, as with [4], a“seed” (i.e., convergent key seed)

is used for controlling and generating all the convergent keys to avoid the fact that adversary could guess or

derive the convergent key just from the content itself. 3) We generate convergent keys on sector-level (i.e.,

generate convergent keys for each sector in file F), to enable integrity auditing. Specifically, since convergent

encryption is deterministic, it allows to compute homomorphic signatures on (convergent) encrypted data as

with on plain data, and thus the sector-level integrity auditing is preserved. Client then continues to encrypt F

sector by sector and uploads the ciphertext to auditor. Specifically, for each sector Bij of F, i = 1; 2; : : : ; s and j

= 1; 2; : : : ; t, client computes ctBij = Enc(sskBij ;Bij), and sends (IDF; {ctBij }i=1;:::;s;j=1;:::;t) to auditor,

where Enc(·) is the symmetric encryption algorithm. The convergent keys sskij are encapsulated by client’s

secret key ck and directly stored at the cloud servers.

Integrity Auditing Protocol:

The integrity auditing protocol works in the same way of that in SecCloud, but imposed on encrypted data.

Specifically, the verifier (could be either the client or the auditor) submits a set of pairs {(i; ci)}i∈ IF where IF

⊆ {1; 2; : : : ; s} and ci ∈ R Z. Upon receiving {(i; ci)}i∈ IF , the cloud servers then computes !j = Σ i∈ IF

cictBij for each j = 1; 2; : : : ; t, as well as the aggregated homomorphic signature _ = Π i∈IF _ci i . In addition,

the cloud server constructs a Merkle hash tree on encrypted blocks ctBi of F and attempts to prove retrievability

1421 | P a g e

at block-level. Precisely, for each i ∈ IF, the cloud server computes a pair (Hash(ctBi);Ωi), where ctBi = [ctBi1

; : : : ; ctBit] and Ωi includes the necessary auxiliary information for reconstructing the root node using {ctBi

}i∈IF . Finally (_; {!j}t j=1; {(Hash(ctBi);Ωi)}i∈IF) is sent to verifier for auditing

VII CONCLUSION

Aiming at achieving both data integrity and deduplication in cloud, we propose SecCloud and SecCloud+.

SecCloud introduces an auditing entity with maintenance of a MapReduce cloud, which helps clients generate

data tags before uploading as well as audit the integrity of data having been stored in cloud. In addition,

SecCoud enables secure deduplication through introducing a Proof of Ownership protocol and preventing the

leakage of side channel information in data deduplication. Compared with previous work, the computation by

user in SecCloud is greatly reduced during the file uploading and auditing phases. SecCloud+ is an advanced

construction motivated by the fact that customers always want to encrypt their data before uploading, and

allows for integrity auditing and secure deduplication directly on encrypted data

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I.

Stoica, and M. Zaharia, “A view of cloud computing,” Communication of the ACM, vol. 53, no. 4, pp.

50–58, 2010.

[2] J. Yuan and S. Yu, “Secure and constant cost public cloud storage auditing with deduplication,” in IEEE

Conference on Communications and Network Security (CNS), 2013, pp. 145–153.

[3] S. Halevi, D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Proofs of ownership in remote storage systems,” in

Proceedings of the 18th ACM Conference on Computer and Communications Security. ACM, 2011, pp. 491–

500.

[4] S. Keelveedhi, M. Bellare, and T. Ristenpart, “Dupless: Serveraided encryption for deduplicated storage,” in

Proceedings of the 22Nd USENIX Conference on Security, ser. SEC’13. Washington, D.C.: USENIX

Association, 2013, pp. 179–194. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity13/technicalsessions/presentation/bellare

[5] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson, and D. Song, “Provable data

possession at untrusted stores,” in Proceedings of the 14th ACM Conference on Computer and Communications

Security, ser. CCS ’07. New York, NY, USA: ACM, 2007, pp. 598–609.

[6] G. Ateniese, R. Burns, R. Curtmola, J. Herring, O. Khan, L. Kissner, Z. Peterson, and D. Song, “Remote

data checking using provable data possession,” ACM Trans. Inf. Syst. Secur., vol. 14, no. 1, pp. 12:1–12:34,

2011.

[7] G. Ateniese, R. Di Pietro, L. V. Mancini, and G. Tsudik, “Scalable and efficient provable data possession,”

in Proceedings of the 4
th

 International Conference on Security and Privacy in Communication Netowrks, ser.

SecureComm ’08. New York, NY, USA: ACM, 2008, pp. 9:1–9:10.

1422 | P a g e

[8] C. Erway, A. K¨upc¸ ¨u, C. Papamanthou, and R. Tamassia, “Dynamic provable data possession,” in

Proceedings of the 16th ACM Conference on Computer and Communications Security, ser. CCS ’09. New

York, NY, USA: ACM, 2009, pp. 213–222.

[9] F. Seb´e, J. Domingo-Ferrer, A. Martinez-Balleste, Y. Deswarte, and J.-J. Quisquater, “Efficient remote data

possession checking in critical information infrastructures,” IEEE Trans. on Knowl. and Data Eng.,

vol. 20, no. 8, pp. 1034–1038, 2008.

[10] H. Wang, “Proxy provable data possession in public clouds,” IEEE Transactions on Services Computing,

vol. 6, no. 4, pp. 551–559, 2013.

[11] Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu, “Cooperative provable data possession for integrity verification in

multicloud storage,” IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 12, pp. 2231–

2244, 2012.

[12] H. Shacham and B. Waters, “Compact proofs of retrievability,” in Proceedings of the 14th International

Conference on the Theory and Application of Cryptology and Information Security: Advances in Cryptology,

ser. ASIACRYPT ’08. Springer Berlin Heidelberg, 2008, pp. 90–107.

[13] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public verifiability and data dynamics for storage

security in cloud computing,” in Computer Security – ESORICS 2009, M. Backes and P. Ning, Eds., vol. 5789.

Springer Berlin Heidelberg, 2009, pp. 355–370.

[14] J. Xu and E.-C. Chang, “Towards efficient proofs of retrievability,” in Proceedings of the 7th ACM

Symposium on Information, Computer and Communications Security, ser. ASIACCS ’12. New York, NY,

USA: ACM, 2012, pp. 79–80.

[15] E. Stefanov, M. van Dijk, A. Juels, and A. Oprea, “Iris: A scalable cloud file system with efficient integrity

checks,” in Proceedings of the 28th Annual Computer Security Applications Conference, ser. ACSAC

’12. New York, NY, USA: ACM, 2012, pp. 229–238.

[16] M. Azraoui, K. Elkhiyaoui, R. Molva, and M. O¨ nen, “Stealthguard: Proofs of retrievability with hidden

watchdogs,” in Computer Security -ESORICS 2014, ser. Lecture Notes in Computer Science, M. Kutyłowski

and J. Vaidya, Eds., vol. 8712. Springer International Publishing, 2014, pp. 239–256.

 Mr.S.Abdul Yunus Basha pursued his B.Tech from

 JNTA,Anantapur and M.Tech JNTA,Anantapur . He worked as professor in RGMCET, Nandyal and

presently working as Placement officer in BITS. He has published 6 International Journals .His research

areas of interest are Computer Netwoks, Cryptography, Cloud computing, Bigdata

1423 | P a g e

Miss Reddy Harika is pursuing B.Tech from Brindavan Institute of Technology & Science in the

department of CSE.

Miss K.Varalakshmi is pursuing B.Tech from Brindavan Institute of Technology & Science in the

department of CSE

Mr.Syed Iliyaz is pursuing B.Tech from Brindavan Institute of Technology & Science in the

department of CSE

