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ABSTRACT 

Proportional-integral-derivative (PID) controllers tuning methods reported based on the approximate plant models 

derived from the step response. In this paper, an improved method proposed which based on the direct synthesis 

method approach (Maclaurin Series) using impulse input instead of step input. For unstable first-order process with 

dead time (FOUPDT) and second order process with dead time (SOUPDT) system in second order system there two 

conditions are considered i.e. One unstable and One stable Pole, Two Unstable Poles. Improved method is compare 

with other available methods for verifying the improved method. Controller tuning methods are compared each 

other i.e. Ziegler-Nichols method (Z-N) [6], C.T. Huang and Y.S. Lin (H-L) [2], Shamsuzzoha and Lee (S-L) [1], Q. 

Wang, C. Lu and W. Pan (W-P) [4], Poulin and Pomerleau (P-P) [3], Tayrus and Luyben (T-L) [10], Yongho Lee, 

Jeongesko Lee, Sunwon Park [7]. Two analysis (Time domain specification and Time integral performance) have 

observe for these controller tuning methods for finding the response of given methods, on the basis of these analysis 

methods are compared for FOUPDT and SOUPDT. 

Keywords: Dead time, FOUPDT, IAE, ISE, ITAE, PID controller, SOUPDT, Tuning, Time constant 

 

I. INTRODUCTION 

Proportional-integral-derivative (PID) controllers have been widely used in process industries for decades. The 

major reasons for their wide acceptance in industries are their ability to control most of the processes, well-

understood control action and ease of implementation. Proportional-integral-derivative (PID) controller has 

remained as commonly used controllers in industrial process control for 50 yr. even though great progress in control 

theory design and tuning of PID controllers has been the subject of many researchers working in this field. This 

because it has a simple structure and is easily understood by the control engineers (Luyben, 1990). As early as 1942, 

Ziegler and Nichols (1942) proposed the first PID tuning method. It is still widely used in practice at present. While 

high performance is always, the design target in industrial control applications and the Ziegler-Nichols method is 

insufficient in such applications. A survey of [8] Desborough and Miller reported that more than 97% of the 

regulatory controllers utilize the PI/PID algorithm. The PI/PID controllers have only few adjustable parameters, and 

are difficult to tune properly in real processes. Many researchers have provided PID controller settings for various 

process models and different performance criteria. All the tuning relations reported in literature based on the 

approximate plant models derived from the step input of the plant in this paper an improved method is developed for 

PID controller tuning which is based on the direct synthesis method (in which mathematical approach comes) by 

maclaurin series with impulse input. The common example of unstable system is the batch chemical reactor, which 
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has a strong nonlinearity due to the heat generation term in the energy balance. In general, transfer function unstable 

processes are FOUPDT (Huang & Lin, 1995) [2] and SOUPDT having two different case; i) One unstable and One 

stable pole, ii) Two unstable poles (Yongho & Jeongesko Lee, 1999) [7] are given below, 

FOUPDT: 
-θsKe

G(s) = 
(τs-1)

 

SOUPDT: i) One unstable and one stable pole: 
-θs

1 2

Ke
G(s) = 

(τ s-1)(τ s+1)
 

ii) Two unstable poles: 
-θs

1 2

Ke
G(s) = 

(τ s-1)(τ s-1)
 

In this paper, comparison of Ziegler-Nichols (1942) [6], C.T. Huang and Y.S. Lin (1995) [2], Shamsuzzoha and Lee 

(2007) [1], Q. Wang, C. Lu and W. Pan (2015) [4] methods are used for FOUPDT. Ziegler-Nichols (1942) [6], 

Tayrus and Luyben (1958) [10], C.T. Huang and Y.S. Lin (1995) [2], Poulin and Pomerleau (1996) [3] are used for 

SOUPDT (One unstable and One stable pole) and Yongho & Jeongesko Lee (1999) are used for (Two unstable 

poles). Time domain specification and Time integral performance of all methods are use for finding the best 

controller tuning method which gives better and higher stability for the process system. MATLAB 7.8 (2009), 

controller-designing software used in this work. Fig.1 classical feedback process diagram  

 

II. DEVELOPMENT OF PID CONTROLLER SETTINGS 

A PID controller designated by, 

P D
I

1
G(s) = K (1+ +τ s)

τ s
       ……….. (A) 

Where, PK = Proportional Gain, Iτ = Integral constant, Dτ = Derivative constant 

For the best performance of the system, need to adjust these three parameters called controller tuning. 

 

Fig.1 Classical Feedback Diagram 

Consider the block diagram of feedback control system shown in Fig.1. The objective is to design a PID controller, 

CG (s) of Fig. 1 that will give the desired closed-loop response, Y/R, as specified by DG (s)  which described by 

either FOUPDT or SOUPDT model. The actual closed-loop response of the control system in Fig.1 is denoted and 

given by AG (s)  is, 

C P
A

C P

G (s)G (s)Y(s)
G (s) =  = 

R(s) 1+G (s)G (s)                                                         
…………. (1) 

Both AG (s)  and dG (s)  can represent by Maclaurin series expansion in 

at s = 0
2 3

' '' '''
A A A A A

s s
G (s) = G (0)+sG (0)+ G (0)+ G (0)+...........

2! 3!
    …………. (2) 
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2 3
' '' '''

d d d d d

s s
G (s) = G (0)+sG (0)+ G (0)+ G (0)+...........

2! 3!                      
…………. (3) 

Where the prime indicates the derivative with respect to s. Note that truncation of the series up to third-order term is 

sufficient to setup three independent equations to determine the PID controller parameters. For an ideal controller, 

the closed-loop response of the actual system results in the desired closed-loop response. Then by comparison, of (2) 

and (3) we have, 

A dG (0) = G (0)                          ………. (4.1) 

' '
A dG (0) = G (0)                          ………. (4.2) 

'' ''
A dG (0) = G (0)                          ………. (4.3) 

''' '''
A dG (0) = G (0)                          ………. (4.4) 

The PID controller parameters are to tune to satisfy all the equations in (4). Let us first derive the expressions 

for AG (0) ,
'
AG (0) ,

"
AG (0) and 

'''
AG (0) for the actual system with a general transfer function for the process PG (s) . It 

noted that no specific transfer function form assumed for the process. 

Transfer function of PID controller from eq
n
 (A) written in the following form, 

C
C C

K
G (s) = G (s)

s
         ……….. (5)             Where  2

C D
I

1
G (s) = τ s +s+

τ
 

On substituting (5) in (1) we get, 




CC P

A
CC P

K G (s)G (s)
G (s) = 

s+K G (s)G (s)
 

Defining P PG (0) = -K , carrying out the indicating differentiation, we get, 

AG (0) = 1                                                               …………. (6.1) 

' I
A

C P

-τ
G (0) = 

K K                                                     

.................. (6.2) 

2 '
'' C PI
A C P

C P I

K G (0)τ
G (0) = 2 1+ -K K

K K τ

  
  
    

     …………… (6.3) 

22 3'' '
''' 'C P C PI I
A C P C P D C P

C P I C P I

K G (0) K G (0)τ τ
G (0) = 3 +2K G (0)-2K K τ +6 1+ -K K

K K τ K K τ

      
      
         

  ………. (6.4) 

 

III. FOUPDT MODEL DESIRED RESPONSE 

-θs

d

e
G (s) = 

τs-1                                   
     ……… (7) 

For the desired response dG (s) in (7), we can derive the following as, 

'
dG (0) = -(τ-θ)

                                  
   .…….. (7.1) 

'' 2 2
dG (0) = -(2τ -2θτ+θ )

                     
  ..……. (7.2) 
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''' 3 2 2 3
dG (0) = (6τ -6θτ -3θ τ-θ )

             
  ..……. (7.3) 

design formulae

I
C

P

τ
K  = 

K (τ-θ)                               

      ..……. (8.1) 

2
'

I P

θ
τ  = +2τ-θ-G

2(τ-θ)
                          ..…… (8.2) 

''2 3
'P

D P2
I II

G3τθ θ (2τ+θ)
τ  = + - -G

2τ (τ-θ) 2τ12τ (τ-θ )
   ……. (8.3) 

 

IV. SOUPDT MODEL DESIRED RESPONSE 

There two processes are consider, 

1. One Unstable and One Stable pole 

2.  

1. One unstable and one stable pole 

The desired response given by, 

-θs

d

1 2

e
G (s) = 

(τ s-1)(τ s+1)
………. (9)

dG (s)

'

d 1 2G (0) = -(τ -τ -θ) ………. (9.1)

" 2 2 2

d 2 1 2 1 2 1G (0) = θ +2(τ -τ )θ+2τ -2τ τ +2τ ……. (9.2)

''' 3 2 2 2 2 2

d 1 2 2 1 2 1 2 2 1 1 2 1G (0) = θ -3(τ -τ )θ +6(τ -τ τ +τ )θ+6τ (τ -τ )+6τ (τ +τ ) ………. (9.3)

I

C

P 1 2

τ
K  = 

K (τ -τ -θ)
………. (10.1)

   

2
'2

I 1 p

1 2 1 2

τ θ
τ  = τ 2- - -θ-G

τ -τ -θ 2 τ -τ -θ

   
   
      

 
2 22

1 2 2 1 1 2

1 2 1 2 1 2

I I I
D

' '2 ' "1 2

P P P I P

(τ +τ ) (2(τ +τ )-τ τ )θ
3(τ -τ )+2-θ - (3τ +3τ +2)- -(τ -τ -θ)

2τ τ τ
τ  = 

(4τ +τ +θ-2)
+ G +(G +2G +1)τ +G

2

 
 
 
 
 
 

2. Two unstable poles 

The desired response given by, 

-θs

d

1 2

e
G (s) = 

(τ s-1)(τ s-1)
………. (11)

dG (s)

 '

d 1 2G (0) = - τ -τ -θ ………. (11.1)



 

436 | P a g e  
 

" 2 2 2

d 2 1 2 1 2 1G (0) = θ -2(τ +τ )θ+2τ +2τ τ +2τ ………. (11.2)

''' 3 2 2 2 2 2

d 2 1 2 1 2 1 2 1 2 1G (0) = θ -3(τ -τ )θ +6(τ +τ τ +τ )θ-6(τ +τ )(τ +τ )        ………. (11.3) 

I

C

P 1 2

τ
K =

K (τ -τ -θ)
                                         ………. (12.1) 

2
'1 2 1 2

I P

1 2 1 2

(τ +τ )θ+3τ τθ
τ  = + -G

2(τ -τ -θ) (τ -τ -θ)
………. (12.2)

     
 

2
'

' "2
P

1 2 P P
D 1 2 2 1 1 2 1 2 I

I I I I I

2 G2(τ -τ )G Gθ 1
τ  = θ+3(τ -τ )+2 + τ (3τ -2)θ-2τ (θ-τ ) -2 τ +τ -θ +τ + 1+ + -

2τ τ τ τ 2τ

  
   
    
    

  

Where, 

'
' P
P

P

G (0)
G = 

G (0)

''
'' P
P

P

G (0)
G = 

G (0)
                    

……………. (B) 

PG (0) '

PG "

PG

PG (0) '

PG "

PG

'

PG "

PG

PY(s) = G (s)X(s)                                     ………. (13) 

For a unit impulse input, for which X(s) = 1 , we have 

PY(s) = G (s)                                           
………. (14) 

-st

0

Y(s) = Y(t)e dt




                                 

………. (15) 

Y(t) , unit impulse response of process, expanding the exponential term inside the integral of eq
n
 (15) in terms of a 

series, 

2 3
2 3

0

s s
Y(s) = Y(t) 1-s+ t - t +.......... dt

2! 3!


 
 
  

  

2 3
2 3

0 0 0 0

s s
Y(s) = Y(t)dt-s tY(t)dt+ t Y(t)dt- t Y(t)dt+........

2! 3!

   

   
         

………. (16) 

PG (s)
 
An also be expanded in a Maclaurin series in as, 

2 3
' '' '''

P P P P P

s s
G (s) = G (0)+sG (0)+ G (0)+ G (0)+........

2! 3!                 
………. (17) 
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On comparing eq
n
 (16) and (17), 

P

0

G (0) = Y(t)dt



 And '' n
P

0

G (0) = t Y(t)dt



  

The first moment of Y(t) i.e. the characteristic time,  

n

'
0 P

0

t Y(t)dt
G (0)

t =  = 
G(0)

Y(t)dt








                                                       

………. (18) 

The second moment of the variable Y (t) about its mean t , variance 2  given by, 

n n

n2 0 0

0 0

(t-t) Y(t)dt t Y(t)dt

σ  =  = -t

Y(t)dt Y(t)dt

 

 

 

 
                                   

………. (19)

First moment, 

We Know, 

n
n n

Pn

0 s=0

d
t Y(t)dt = (-1) G (s)

ds


 
 
 

  

For First moment n=1 

P

0

tY(t)dt = (τ-θ)K



                                    ………. (20) 

 P Ps=0

0

Y(t)dt = G (s) = -K




                          

………. (21) 

On putting (20) and (21) in (18) we get, 

t = -(τ-θ)                                                   ………. (22) 

Second moment, 

 2 2 2

P

0

t Y(t)dt = - 2τ -2τθ+θ K



                  ………. (23) 

On putting (23) and (21) in (19) we get, 

 
2

2 2 2σ +t  = 2τ -2τθ+θ                                ………. (24) 

Similarly, first and second moments calculated for both case of SOUPDT. 

Hence, controller tuning Formulae become; 

 

 

 

4.3 FOUPDT 
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I
C

P

τ
K  = 

K (τ-θ)
 

2

I

θ
τ  = +2τ-θ+t

2(τ-θ)
 

22 3 2

D 2 2
II I

3τθ θ (2τ+θ) (σ +t )
τ  = + - +t

2τ(τ-θ) τ 12τ (τ-θ)  

4.4 SOUPDT 

 One Unstable and One Stable Pole: 

I

C

P 1 2

τ
K  = 

K (τ -τ -θ)

2

2

I 1

1 2 1 2

τ θ
τ  = τ 2- - -θ-t

(τ -τ -θ) 2(τ -τ -θ)

 
 
 

 
2

2 2 22 1 1 2 1 2

D 1 2 1 2 I

I I

(2(τ +τ )-τ τ ) (4τ +τ +θ-2)θ
τ  = 3(τ -τ )+2-θ - -(τ -τ -θ)+ t+(t +2t+1)τ +(σ +t )

2τ τ 2

 Two Unstable Poles:  

I

C

P 1 2

τ
K =

K (τ -τ -θ)
 

2

1 2 1 2

I

1 2 1 2

(τ +τ )θ+3τ τθ
τ  = + -t

2(τ -τ -θ) (τ -τ -θ)

     
2 22 2

1 2
D 1 2 2 1 1 2 1 2 I

I I I I I

2(τ -τ )tθ 1 2t (σ +t )
τ  = θ+3(τ -τ )+2 + τ (3τ -2)θ-2τ (θ-τ ) -2 τ +τ -θ +τ + 1+ + -

2τ τ τ τ 2τ

   
          

 

 

V.SIMULATION 

All simulations in this paper were performing using MATLAB 7.8, (2009) (control system design and simulation 

software) (Shahian & Hassul, 1993) [11]. There example consider for both FOUPDT and SOUPDT for studying the 

controller tuning methods and result of each method is shown below separately. Comparison of methods in graph 

shows by output of the process. Unit step changes are consider for regulatory problems.    

Examples, 

For FOUPDT, The Following process considered [1] (Shamsuzzoha and Lee, 2007) 

-0.4s

P

1.e
G (s) = 

1.s-1
      (Step input of magnitude 1 at t = 20sec given for the process) 

Table 1 given below show the controller parameters value calculated by proposed and other considered methods, 

 

 

 

Sr. No. Method 
CK  Iτ  Dτ  
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Table 1 

For SOUPDT, 

1. One Unstable and One Stable Pole, The Following process considered [2] (Huang & Chen, 1997) 

-0.939s

P

1e
G (s) = 

(5s-1)(2.07s+1)   
(Step input of magnitude 1 at t = 200 sec given for the process) 

Table 2 given below show the controller parameters value calculated by proposed and other considered method, 

Table 2 

2. Two Unstable Poles, The Following process considered [7] (Yongho Lee et al., 1999) 

  

-0.3s

P

2.e
G (s)=

3s-1 s-1
      

(Step input of magnitude 1 at t=200 sec given for the process) 

Table 3 given below show the controller parameters value calculated by proposed and other considered method, 

Table 3 

IV. TIME DOMAIN SPECIFICATION 

For FOUPDT, 

 

Table 4 

 

For SOUPDT, 

1 Ziegler – Nichols 1.9647 0.95 0.2375 

2 C.T. Huang and Y.S. Lin 2.520 1.65 0.191 

3 Shamsuzzoha and Lee 2.62 1.08 0.214 

4 Q.Wang, C. Lu and W. Pan 2.21 1.01 0.17 

5 Proposed (Improved) 1.888 1.133 0.384 

Sr. No. Method 
CK  Iτ  Dτ  

1 Ziegler – Nichols 1.8882 0.14285 1.75 

2 Tayrus-Luyben 1.45 0.032 2.22 

3 C.T. Huang and Y.S. Lin 3.954 0.2016 2.074 

4 Poulin and Pomerleau 3.050 0.1323 2.070 

5 Proposed (Improved) 2.889 0.1738 4.6058 

Sr. No. Method 
CK  Iτ  Dτ  

1 Yongho Lee et al. 2.0 1.7 4.1 

2 Proposed (Improved) 0.29 1 4.32 

 

Sr. No. 

 

Method 

Time domain specification (Sec) 

Rise Time (TR) Settling Time (TS) 

1 Ziegler-Nichols 0.833 45.67 

2 C.T. Huang and Y.S. Lin 0.833 30 

3 Shamsuzzoha and Lee 0.834 30 

4 Q.Wang, C. Lu and W. Pan 0.836 20 

5 Proposed (Improved) 0.73 16 
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1. One Unstable and One Stable Pole 

Sr. No. Method 
Time domain specification (Sec) 

Rise Time (TR) Settling Time (TS) 

1 Ziegler-Nichols 4.5 260 

2 C.T. Huang and Y.S. Lin 5.667 180 

3 Shamsuzzoha and Lee 3.33 400 

4 Q.Wang, C. Lu and W. Pan 3.66 193.33 

5 Proposed (Improved) 4.1 60 

Table 5 

2. Two Unstable Poles 

 

Sr. No. 

 

Method 

Time domain specification (Sec) 

Rise Time (TR) Settling Time (TS) 

1 Yongho Lee et al. 1.25 195 

2 Proposed (Improved) 2.5 105 

Table 6 

 

V. TIME INTEGRAL PERFORMANCE 

For FOUPDT, 

Sr. No. Method IAE ISE ITAE 

1 Ziegler – Nichols 3.702 3.287 9.054 

2 C.T. Huang and Y.S. Lin 4.446 4.098 13.01 

3 Shamsuzzoha and Lee 2.462 2.408 3.813 

4 Q.Wang, C. Lu and W. Pan 3.07 3.064 5.664 

5 Proposed (Improved) 4.32 3.246 14.37 

Table 7 

For SOUPDT, 

1. One Unstable and One Stable Pole 

Sr.No. Method IAE ISE ITAE 

1 Ziegler – Nichols 43.47 38.15 1324 

2 Tayrus-Luyben 49.79 62.91 1201 

3 C.T. Huang and Y.S. Lin 37.03 22.38 1400 

4 Poulin and Pomerleau 16.96 12.79 245.2 

5 Proposed (Improved) 10.92 6.237 110.3 

Table 8 

 

 

 

2. Two Unstable Poles 
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Sr.No. Method IAE ISE ITAE 

1 Yongho Lee et al. 7.729 2.489 131 

2 Proposed (Improved) 6.369 2.87 56.31 

Table 9 

V. SIMULATION RESULTS 

Fig. 2 and 3 shows PID controller performance by proposed and each considered method and comparison of these 

methods for FOUPDT system. 

Fig. 4 and 5 shows PID controller performance by proposed and each considered method and comparison of these 

methods for SOUPDT (One Unstable and One Stable Pole) system.  

Fig. 6 and 7 shows PID controller performance by proposed and each considered method and comparison of these 

methods for SOUPDT (Two Unstable Poles) system.  

For FOUPDT, 

 

Fig. 2 
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Fig. 3 

 

For SOUPDT, 

 One Unstable and One Stable Pole 

 

Fig. 4 
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Fig. 5 

 Two Unstable Poles 

 

Fig. 6 
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Fig. 7 

VI. RESULTS AND DISCUSSION 

Controller parameters calculated by tuning, these parameters make inverse effect to each other for optimum value of 

controller. Proposed and other considered methods used for controller design for seeing which design method gives 

good stability of the controller response. Time domain specification shows rise and settling time of controller, 

minimum rise and settling time needed for good response of controller. Time integral performance shows different 

error like IAE, ISE, and ITAE, which shows controller robustness. 

VII. CONCLUSION 

PID controller designed for FOUPDT and SOUPDT by Proposed and other considered controller tuning methods. 

All methods are work in direction of settling the process variable to a desired set value. In FOUPDT, time domain 

specification shows proposed method have less rise and settling time compared to other method and time integral 

performance shows proposed method have IAE, ISE and ITAE are minimum compared to C.T. Huang and Y.S. Lin 

method and maximum compared to other controller tuning methods for FOUPDT system. However, on time basis 

proposed method is better response and shows good stability this shows that proposed method for first order 

unstable process without taking too much time and oscillation for attain stability of the system. In SOUPDT, for one 

unstable and one stable pole, Time domain specification shows proposed method have more rise time compared to 

other method but less settling time. Controller stability and time integral performance shows proposed method have 

IAE, ISE and ITAE are minimum compared to other controller tuning method this shows this method gives very 

good stability and robust response of controller for second order unstable process without taking too much time and 

oscillation for attain stability of the system. In case of two unstable poles, Time domain specification shows 

proposed method have more rise time compared to other method but less settling time. Controller stability and time 

integral performance shows proposed method have IAE, ISE and ITAE are minimum compared to other controller 

tuning method this shows this method gives very good stability and robust response of controller for second order 

unstable process without taking too much time and oscillation for attain stability of the system. 
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