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ABSTRACT

In the present paper we extend some related fixed point theorems due to Gupta [4] for four Menger spaces. The
results of Gupta [4] are the special cases of the results established in this paper.
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I. INTRODUCTION

There have been a number of generalizations of metric space. One such generalization is Menger space initiated by
Menger [7]. It is a probabilistic generalization in which we assign to any two points x and y, a distribution function
Fxy- Schweizer and Sklar [10] studied this concept and gave some fundamental results on this space.

Fisher [2] initiated the study of existence of related fixed point for two mappings on two metric spaces. Later Fisher
and Murthy [3] proved some related fixed point theorems for two pairs of mappings on two metric spaces. Also
some related fixed point theorems on metric spaces have been established by Namdeo and Fisher [9], Kikina and
Kikina [6], Jain, Sahu and Fisher [5] and Ansari, Sharma and Garg [1]. Recently Gupta [4] established some related
fixed point theorems for four mappings on four metric spaces.

In this paper, we extend and generalize the result of Gupta [4] to four Menger spaces and established some related
fixed point theorems.

I1. PRELIMINARIES

Definition 2.1. [8] A mapping #: R — R* is called a distribution if it is non-decreasing left continuous with
inff{F{)|[teR}=0 and sup{F()|te R}=1.
We shall denote by L the set of all distribution functions while H will always denote the specific distribution

function defined by H(t) = {2 :ig

Definition 2.2. [8] A mapping t: [0, 1] x [0, 1] — [0, 1] is called a t-norm if it satisfies the following conditions
(t-1) ta, 1) =a, t(0,0)=0;

(t-2) t(a, b) = t(b, a) ;

(t-3) t(c,d) > t(a,b); forc>a,d>h,

(t-4) t(t(a, b), ¢) = t(a, t(b, c)) foralla, b, c,d [0, 1].
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Definition 2.3. [8] A probabilistic metric space (PM-space) is an ordered pair (X, #) consisting of a non-empty

set X and a function #: X x X — L, where L is the collection of all distribution functions and the value of at (u, v)

e X x X is represented by Fu, v+ The function Fu,v assumed to satisfy the following conditions:
(PM-1) Fu’v(x) =1, forall x>0, ifand only if u=v;

(PM-2) Fu,v 0)=0;

(PM-3) Fu,v = Fv,u;

(PM-4) If Fuv x)=1and FVw (y) = 1 then Fuw(x +y)=1,foralluvwe Xandx,y>0.

Definition 2.4. [8] A Menger space is a triplet (X, , t) where (X, F) is a PM-space and t is a t-norm such that the
inequality
(PM-5) Fuvv x+y)>t {Fu y (x), FV W(y) }, forallu,v,w e X, x,y>0.

Definition 2.5. [8] A sequence {xn} in a Menger space (X, , t) is said to be convergent and converges to a point x
in X if and only if for each € >0and A > 0, there is an integer M(g, L) such that
Fy ,X(g)>1-x for all n > M(e, A).
n
Further the sequence {xn} is said to be Cauchy sequence if for ¢ >0 and A > 0, there is an integer M(g, A) such that
FX . (e) >1-A forallm, n>M(g, A).

A Menger PM-space (X, &, t) is said to be complete if every Cauchy sequence in X converges to a point in X.

A complete metric space can be treated as a complete Menger space in the following way:

Proposition 2.1. [8] If (X, d) is a metric space then the metric d induces mappings
F: X x X —> L, defined by Fp,q(x) =H(x-d(p, 9)), p, q € X, where

H(k) =0, fork<0 and H(k)=1, fork>0.
Further if, t: [0,1] x [0,1] — [0,1] is defined by t(a, b) = min {a, b}. Then (X, & t) is a Menger space. It is
complete if (X, d) is complete.

The space (X, F, t) so obtained is called the induced Menger space.

Lemma 2.1. [8] Let (X, F t) be a Menger space. If there exists a constant k e (0, 1) such that
Fyry (kKt) > Fy (1)

for all t > 0 with fixed X,y € X thenx =y.
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I11. MAIN RESULT

Theorem 3.1. Let (X, F, *), (Y, G, *) and (Z, H, *) be the complete Menger spaces, where * is a continuous t-
norm (i.e. min t-norm). Let T be a continuous mapping of X into Y, S be a continuous mapping of Y into Z and R is

a mapping of Z into X satisfying the inequalities :

(3.1)  Frstarsto(kt) 2 Min{F, (), Fxrstx(t), Frers(t), Grxre(t), Hsry st ()}

(3.2)  Grrsytrsy'(Kt) 2 Min{Gy (1), Gy rsy(t), Gy trsy (1), Hsy.sy" (1), Frsy, rsy (D)}
(33)  Hsrrestro(Kt) = Min{H, (1), Hzstro(t), Hy srr (1), Frore (1), Grre, tre (D)}
forallx,x’inX,y,y” inY and z, 2’ in Z where 0 <k < 1.

Then RST has a unique fixed point u in X, TRS has a unique fixed point vin Y and STR has a unique fixed point w

in Z. Further Tu=v, Sv=wand Rw = u.

Proof. Let x, be an arbitrary point in X. Define sequences {x.}, {y.} and {z,} in X, Y and Z respectively by
Xn = (RST)"Xo, Yn=TXn1, Zn=Synforn=0,1,2, ....
Applying inequality (3.2), we have
Gy, ey (KD = Grrsy, ,, TRy, (1) (3.4)
> min{Gy_, (. Gy y . (0. Hz 2 (O, Fx _ « (0}
= min{Fy_x (0, Gy .y (0. Hy 2 (O}
Using inequality (3.3), we have
Hzn,zn+1(kt) = Hstry, STRZn(t) (3.5)
(), Fx_x (0. Gy y (O}

= minFy . @, Gy, y O, Hz 2 (O}

>=min{H, . (1), H,

nZn+1

on using inequality (3.4).
Using inequality (3.1), we have
Fryxag (KD = Frstx ) R (1) (3.6)

> min{Fxn_l,xn(t), Fx x .. (), Gyn,yn+1(t): H, . (D}

n'n+l n “n+l

2,0}

n-1' “n

= min{F.__x (1, Gy_y (O, H
on using inequalities (3.4) and (3.5).
It now follows easily by induction on using inequalities (3.4), (3.5) and (3.6) that
Fr s, (K™10) 2 min{Fy (0, Gy, y,(0), Hay 2, (03
Gy, .., (K™'t) = min{F, (1), Gy, y,(t), Hz, o, (1)}

H, . (K™ >min{F, (1), Gy, y, 1), Hep o, (0}
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Since k < 1, it follows that {x,}, {yn}, {z.} are Cauchy sequences with limits u, v and w in X, Y and Z respectively.

Since T and S are continuous, we have

limy,= limTx,= Tu=v,

n—w n—oo

limz,= lim Sy, =Sv=w.

Using inequality (3.1) again, we have
FRSTu,xn(kt) = FRSTu,xn_l(t)
= min{Fyx (1), Furstu(®), Fx ,x (1), Grumx (1), Hsry s, (D}
Since T and S are continuous, it follows on letting n — o that
Frstu, u(kt) = Fyrstu(t).
Thus, RSTu = u, since k <1 and so u is fixed point of RST.
We now have
TRSv =TRSTu=Tu=vand so
SRTw=STRv=Sv=w.
Hence, v and w are fixed points of TRS and STR respectively.
Now, we prove the uniqueness of the fixed point u.
Suppose that RST has a second fixed point u’.
Then using inequality (3.1), we have
Fuw(kt) = Frsty, rstu(Kt)
> min{F,(t), Furstu()), Fursto (), Grume (), Hsru, stw ()}
= Min{Gry 1w (t), Hstu,stu(t)}
Further using inequality (3.2), we have
Grutw(Kt) = Grrsry, TrRsTur(KE)
> Mi{Gry 1w (1), GryrsTu(t), Grw trsTe (1), Hstu, st (1), FrRsTursTw (1)}
= min{F, (), Hstustu()}-
Hence, we have
Fuw(Kt) = Hsry st (1)
And finally on using inequality (3.3), we now have
Fuw(Kt) = Hsry, sto(t) = Hsrrsru, strso(t)
2 kzmaX{HSTu,STu’(t)l HstustrsTu(t), Hsw strstwe(t), Frsmu, Rt (), Grrsmu, RS ()}
= K'max{Hsm st (t), Fuw(t), Grun()}.
Since k < 1, it follows that u = u’ and the uniqueness of u follows.
Similarly, it can be proved that v is the unique fixed point of the TRS and w is the unique fixed point of STR.

We finally prove that we also have
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4Rw = R(STRw) = RST(Rw)

and so Rw is the fixed point of RST. Since u is the unique fixed point of RST, it follows that Rw = u.

This completes the proof of the theorem.

Theorem 3.2. Let (Xy, F1, *), (X3, Fa, *), (X3, F3, *) and (X4, Fs, *) be the complete Menger spaces, where * is a
continuous t-norm (i.e. min t-norm). If T, is a continuous continuous mapping of X, into X,, T, be a continuous
mapping of X, into X3, T3 be a continuous mapping of X5 into X, and T, be a mapping of X, into X; satisfying the

inequalities :
B7)  Rrrnm e (KO 2min{R, | (0.F, 1 (0:F g rnmg (O

I:2 Tixg, X! (t)! F3 T, ToTyxg ! (t)! F4 TaToTiX, TeTo Xy ! (t)}
(38) I:2 T TTTiXy, T T T Tix, ! (kt) 2 min{FZ Xp,Xp ' (t)i I:2 Xo, i Ty TaToX, (t)i I:2 Xy VT T3ToX, " (t),

FS ToXp, ToX, ' (t)’ F4 TaToXy, TaTox, ! (t)! ':1T4T3T2x2 TaTTox, ! (t)}
B9 Rrrm manme (KD 2mindR, (0, F e, (0. F a0,

I:4 ToX3,TaXs ' (t), Fl TaTaxXs TyTaxs ' (t), Fz T TeXs T, TeXs'! (t)}
(3-10) F4 T, T TaXg, T LT Tax, ! (kt) 2 min{F4 Xg,Xa" ('[), F4 X4, T3 T Ty TaXe ('[), I:4 X4\ TaToTiTaX,s " (t):

Rt o (O o, 1 (O Bormr, o, (D}
for all xq, X;” € Xq, Xo, Xo” € Xy, X3, X3” € X3, X4, Xa” € Xu, Where0 <k <1,

Then T,4T5T,T, has a unique fixed point oy in X;, T;T,T3T, has a unique fixed point a, in X,, T,T;T4T3 has a

unique fixed point az in Xzand T3T,T,T, has a unique fixed point oy in Xj.

Proof. Let x° be an arbitrary point in X,. Define the sequences {xi,} {xz} , {x3} and {x‘n‘} in Xy, Xy, Xz and X,

n n

respectively by

(T,T,T,T,)" %} =x;

n-1 n

2 U3
szn - Xn

3 _ 4
T3Xn - Xn

Tx}=x! forn=1,2,3,....
Now applying inequality (3.8), we get

R . (K)=F

t
2T TG, T T TG ( )
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> min{F2 2 (t) sz P (t).F, P p—— (1),
Foroamoe O Forne, re O Fprr s rne (O
oo, (k) ZminE, . (OF,. (OF, . O F, JOF, (OF, (O}
Foe e (k) 2min{F . . (O).F. .(OF. . .F. .tF.,. .0} (3.11)
Using inequality (3.9), we get
o, (0= Fe o (O
2midF O F e, O F e e (O
F, Tl 4 T (1), F:I.TAT3xﬁ,1,T4T3><?, (O.F, LT T T ) (3.12)
Foo e (KO 2min{F . (O.F. O.F.. ®. F. OF, .OF,. .1}
e, (KO 2mindF L (O.F,. S(O.F . 1), F . (0}
Using inequality (3.10), we get
F4x;* X (kt)=F, TTLT 1 T, (®
> M, O Foe e, O0F g e O
Rt O Fait it O P g O3 (3.13)
F4x‘n‘,x‘;+1 (kt) Zmin{FN » (t), axt (t) F v (1), leh'x# (t)’F2x§,xﬁ+1 (t)’sta,xgﬂ )}
Fo o (O 2min{F,  (F,, (OF, 0 F . 0O}
Using inequality (3.7), we get
len - 1('[) - |:1T4T3TZ'I'1X},,1,T4T3T2T1><1,, v
2midF (O F e (OF 4 e (O,
(3.14)

2 TG4, T (t)’ F3 T TG (t), F4 TLTG 1 TG, (t)}

Fo, () 2minF, O.F, OF, . ® F.. OF.. OF. . O}

R () =min{E . (0.F. .(0F,. .0 F. .0}
By induction on using inequalities (3.11), (3.12), (3.13) and (3.14), we get

1><1 Xk (k" lt) 2 mln{Fl X3, x5 (t) FZX2 x3 (t) F3 X3 %3 (t) I:4 Xt ,x¢ (t)}

Fo e, (K1) =mindF o (0).F, . . (1).F,, . (D), F, ..}

(k") zmin{F, ., ().F,. . (O.F ;s (O.F, . . (O}

3x3 X3 2x2 X3
4)<4 x4 (k” lt) 2 mln{Fl x5 (t) F2><2 x3 (t) F3><3 x3 (t) F4 Xt %3 (t)}
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Since k < 1, it follows that {xi,} {xz}, {x3} and {x‘n‘} are Cauchy sequences with limit o, o, o and oy in Xy,

n n

X,, X3 and X, respectively. Since T4, T,, T3 and T, are continuous, we have

!Lm X = rl\gn Tix; = Twog = oy,
H 3 —q; — —
lim x; = limT,x2 = T,0, = o,
n—om n—w n

lim X;1 = lim Tax® = Tz03 = agu.
n—w n—w n

Using inequality (3.7) again, we have
Firmmmo e (KO =Frrrn crrpe (O
2mindF,, o O Ko OF s e O Frg e OFirgg s OFnm o0 OF
Since Ty, Ty, T3 are continuous, it follows on letting n — oo that
FZI.T4T3T2T1(1,1,(11 (kt) = min{Fl oy, TyTaTyThoy ()2
Thus, we have T4T3T,Tia4 = oy, Since k <1 and oy is a fixed point of T4TsT,T;.
TiT4TsTo0 = TiT4T3ToTioy = Tiow =0
ToT TyTa03 =TT T4T3To0 = Toon = o and
T3ToT Ta0, = TaToT 1 TaT303 = Ti05 = .
Hence, a,, oz and oy are the fixed points of T, T4T3sT,, ToT1T4Tz and TsT,T,T, respectively.
Uniqueness :

Suppose that T4T5T, T, has another fixed point oy.

Then using inequality (3.7), we have
R o0y (kt) = FZI.T4T3T2'I'1(11, T, oy ®

> M, o, O R ne, O R e O Fore e O Frn nre O Frnr, e, (03 (315)
o (KO ZMingR 0RO R O R o 0 Fra mre O, e, (O3
Using inequality (3.8), we have
Fz Tlal,'l'lal'(kt) = Fz T, T T oy, TT,TaT,hay ' (t)
2 min{FZ Ty, Tioy" (t)! F2 Tioy, T T T3 T Ty (t)i F2 Ty \ T Ty 3T, oy (t)!
F3 T,Toy, oy ' (t)i F4 T ToToy, T3 Tay ' (t)’ F4 T TToToy Ty T3 T, oy (t)}
Pty o (KO 2 MIN{F, 5 20 (0, R, 10, (0 R, i, (0,
F3 T,Tioy, ooy ' (t)’ F4 TaT, oy, Ty T, Ty ! (t)l Fl T T, oy, Ty T T, Toy (t)}
ooy oy (KO 2Min{F, 7, 10 (0 Frn, mme (0 Farr o, mrmey (00 R, o (0}

F2 Ty, Tioy ' (kt) 2 min{F3 T, oy, T, oy (t)’ F4 T oy, TaToT oy (t)’ Fl oy,00" (t)} :
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Now we write

Pt (0 2 M, o 0 P, i (0 P e, (0
Py ot O P, e (0. F o (O} (3.16)
Pt (K0 2 M o (0, Fon, i, (O3
Similarly, on using inequality (3.9), we have
P e (KO ZMiN{F o0, o0 (0. Frre, im0 Bgne mrmmnme (O,
Fa rirmoe it (O Ao, mrmman (00 Bogrrme, mrnm o, (O3
Forma mme (KO ZMI{E ) 2o (00 R, 1o (00 Frne, mina, (O,
Fotmmo miney (00 R o (0, Forg, 7o, (0} (3.17)
Formay ity (KO 2 MINE, 0 o (00 R o (0 Forg, 1o (D}
Py ey (KO = My o 2o (0, F o (0, Fr, e (00 Fo im0
Using inequality (3.16) and (3.17), we have
Faron e (KO Z MM o (O, (3.18)
Similarly, on using inequalities (3.10), (3.16) and (3.18), we have
ot monmmme (KO 2R o (D). (3.19)
Using inequalities (3.15), (3.16), (3.18) and (3.19), we have
Fopo (KD ZFyp 10 (0)
Ry (KO 2 Ry, 1, (1)
Fo e (KD 2 F 0, 170, ()
R (K'D2F,, (0.
Now, we have
Foo KD2F, (0.
Since 0 <k <1, we have
Floo (D=0
= o =0
proving the uniqueness of a;.

We can similarly prove that T,T,T3T, has a unique fixed point a, in X,, T,T;T4T3 has a unique fixed point oz in X3

and T3T,T;T4 has a unique fixed point ay in X,.
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V. CONCLUSION

In this paper, we established two related fixed point theorems for four mappings in four Menger spaces which

generalizes and extends the result of Gupta [4] in four metric spaces.
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