
 

239 | P a g e  

 

SOME RELATED FIXED POINT THEOREMS FOR 

FOUR MENGER SPACES  

Arihant Jain
1
, Basant Chaudhary

2
 

1
Shri Guru Sandipani Girls’ Institute of Professional Studies, Ujjain (M.P.) (India) 

2
Research Scholar, Department of Applied Mathematics, Mewar University, Chittorgarh (Raj.)(India) 

 

ABSTRACT  
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I. INTRODUCTION 

There have been a number of generalizations of metric space. One such generalization is Menger space initiated by 

Menger [7]. It is a probabilistic generalization in which we assign to any two points x and y, a distribution function 

Fx,y. Schweizer and Sklar [10] studied this concept and  gave some fundamental results on this space.  

Fisher [2] initiated the study of existence of related fixed point for two mappings on two metric spaces. Later Fisher 

and Murthy [3] proved some related fixed point theorems for two pairs of mappings on two metric spaces. Also 

some related fixed point theorems on metric spaces have been established by Namdeo and Fisher [9], Kikina and 

Kikina [6], Jain, Sahu and Fisher [5] and Ansari, Sharma and Garg [1]. Recently Gupta [4] established some related 

fixed point theorems for four mappings on four metric spaces. 

In this paper, we extend and generalize the result of Gupta [4]  to four Menger spaces and established some related 

fixed point theorems. 

 

II. PRELIMINARIES 

Definition 2.1. [8]  A mapping F : R R+ is called a distribution if it is non-decreasing left continuous with  

inf { F(t) | t  R } = 0    and    sup { F(t) | t  R} = 1. 

We shall denote by L the set of all distribution functions while H will always denote the specific distribution 

function defined by 
0, t 0

H(t) .
1, t 0


 


 

Definition 2.2. [8] A mapping t : [0, 1] × [0, 1]  [0, 1] is called a  t-norm  if  it  satisfies the following conditions  

(t-1)  t(a, 1) = a,       t(0, 0) = 0 ; 

(t-2)  t(a, b) =  t(b, a) ; 

(t-3)  t(c, d)   t(a, b) ;     for c  a, d  b, 

(t-4)  t(t(a, b), c) =  t(a, t(b, c))  for all a, b, c, d [0, 1]. 
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Definition 2.3. [8] A probabilistic metric space (PM-space)  is an ordered pair (X, F) consisting of a non-empty 

set X and a function F : X × X  L, where L is the collection of all distribution functions and the value of F at (u, v) 

 X × X is represented by  Fu, v. The function Fu,v assumed to satisfy the following conditions: 

(PM-1 ) F
u,v

(x) = 1, for all x > 0, if and only if  u = v; 

(PM-2) F
u,v

 (0) = 0; 

(PM-3) F
u,v

 = F
v,u

; 

(PM-4) If F
u,v

 (x) = 1 and F
v,w

 (y) = 1 then F
u,w

 (x + y) = 1, for all u,v,w  X and x, y > 0.  

 

Definition 2.4. [8] A Menger space is a triplet (X, F, t) where (X, F) is a PM-space and t is a t-norm such that the 

inequality 

(PM-5) F
u,w

 (x + y)  t {F
u, v

 (x), F
v, w

(y) }, for all u, v, w  X, x, y  0. 

 

Definition 2.5. [8] A sequence {x
n
} in a Menger space (X, F, t) is said to be convergent and converges to a point x 

in X if and only if for each   > 0 and  > 0, there is an integer M(, ) such that   

   Fx
n
, x () > 1 -   for all n  M(, ).   

Further the sequence {x
n
} is said to be Cauchy sequence if for> 0 and   > 0, there is an integer M(, ) such that  

   F
x

n
, x

m

 () > 1-  for all m, n  M(, ).  

A Menger PM-space (X, F, t) is said to be complete if every Cauchy sequence in X converges to a point in X. 

A complete metric space can be treated as a complete Menger space in the following way: 

 

Proposition 2.1. [8] If (X, d) is a metric space then the metric d induces mappings  

F : X × X  L,  defined by Fp,q(x) = H(x - d(p, q)), p,  q X, where  

  H(k) = 0,    for k  0   and   H(k) = 1,   for k >0. 

Further if,  t : [0,1] × [0,1] [0,1] is defined by t(a, b) = min {a, b}. Then (X, F, t) is a Menger space.  It is 

complete if (X, d) is complete. 

The space (X, F, t) so obtained is called the  induced Menger space. 

 

Lemma 2.1. [8] Let (X, F, t) be a Menger space. If there exists a constant k (0, 1) such that 

 Fx,y (kt) Fx,y(t) 

for all t > 0 with fixed x, y X then x = y. 
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III. MAIN RESULT 

Theorem 3.1.  Let (X, F, *), (Y, G, *) and (Z, H, *) be the complete Menger spaces, where * is a continuous t-

norm (i.e. min t-norm). Let T be a continuous mapping of X into Y, S be a continuous mapping of Y into Z and R is 

a mapping of Z into X satisfying the inequalities :  

(3.1) FRSTx,RSTx’(kt) min{Fx,x’(t), Fx,RSTx(t), Fx’,RSTx’(t), GTx,Tx’(t), HSTx, STx’(t)} 

(3.2) GTRSy,TRSy’(kt) min{Gy,y’(t), Gy,TRSy(t), Gy’,TRSy’(t), HSy,Sy’(t), FRSy, RSy’(t)} 

(3.3) HSTRz,STRz’(kt) min{Hz,z’(t), Hz,STRz(t), Hz’,SRTz’(t), FRz,Rz’(t), GTRz, TRz’(t)} 

for all x, x’ in X, y, y’  in Y and z, z’ in Z where 0 k  1.  

Then RST has a unique fixed point u in X, TRS has a unique fixed point v in Y and STR has a unique fixed point w 

in Z. Further Tu = v, Sv = w and Rw = u. 

 

Proof.  Let x0 be an arbitrary point in X. Define sequences {xn}, {yn} and {zn} in X, Y and Z respectively by  

 xn = (RST)
n
x0,  yn = Txn-1,  zn = Syn for n = 0, 1, 2, … . 

Applying inequality (3.2), we have  

 Gy
n
,y

n+1
(kt) =  GTRSy

n-1
, TRSy

n
(t)                                    (3.4) 

 min{Gy
n-1

,y
n
(t), Gy

n
, y

n+1
(t), Hz

n-1
,
 
z
n
(t), Fx

n-1
, x

n
(t)} 

           = min{Fx
n-1

,x
n
(t), Gy

n-1
, y

n
(t), Hz

n-1
,
 
z
n
(t)} 

Using inequality (3.3), we have  

 Hz
n
,z

n+1
(kt) =  HSTRz

n-1
, STRz

n
(t)                                (3.5) 

 min{Hz
n-1

,z
n
(t), Hz

n
,z

n+1
(t), Fx

n-1
,x

n
(t), Gy

n
, y

n+1
(t)} 

           = min{Fx
n-1

,x
n
(t), Gy

n-1
, y

n
(t), Hz

n-1
,
 
z
n
(t)} 

on using inequality (3.4). 

Using inequality (3.1), we have  

 Fx
n
,x

n+1
(kt) =  FRSTx

n-1
, RSTx

n
(t)                                 (3.6) 

 min{Fx
n-1

,x
n
(t), Fx

n
,x

n+1
(t), Gy

n
,y

n+1
(t), Hz

n
, z

n+1
(t)} 

          = min{Fx
n-1

,x
n
(t), Gy

n-1
, y

n
(t), Hz

n-1
,
 
z
n
(t)}. 

on using inequalities (3.4) and (3.5).  

It now follows easily by induction on using inequalities (3.4), (3.5) and (3.6) that  

 Fx
n
,x

n+1
(k

n-1
t) min{Fx

1
,x

2
(t), Gy

1
, y

2
(t), Hz

1
,
 
z
2
(t)} 

 Gy
n
,y

n+1
(k

n-1
t) min{Fx

1
,x

2
(t), Gy

1
, y

2
(t), Hz

1
,
 
z
2
(t)} 

 Hz
n
,z

n+1
(k

n-1
t) min{Fx

1
,x

2
(t), Gy

1
, y

2
(t), Hz

1
,
 
z
2
(t)}. 
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Since k < 1, it follows that {xn}, {yn}, {zn} are Cauchy sequences with limits u, v and w in X, Y and Z respectively.  

Since T and S are continuous, we have 

 
n
lim


yn = 
n
lim


Txn =  Tu = v, 

 
n
lim


zn = 
n
lim


Syn = Sv = w. 

Using inequality (3.1) again, we have 

 FRSTu,x
n
(kt) = FRSTu,x

n-1
(t) 

                   min{Fu,x
n-1

(t), Fu,RSTu(t), Fx
n-1

,x
n
(t), GTu,Tx

n-1
(t), HSTu, STx

n-1
(t)}. 

Since T and S are continuous, it follows on letting n that 

 FRSTu, u(kt)  Fu,RSTu(t). 

Thus, RSTu = u, since k < 1 and so u is fixed point of RST. 

We now have 

 TRSv = TRSTu = Tu = v and so 

 SRTw = STRv = Sv = w. 

Hence, v and w are fixed points of TRS and STR respectively. 

Now, we prove the uniqueness of the fixed point u. 

Suppose that RST has a second fixed point u’. 

Then using inequality (3.1), we have 

      Fu,u’(kt) = FRSTu, RSTu’(kt) 

min{Fu,u’(t), Fu,RSTu(t), Fu’,RSTu’(t), GTu,Tu’(t), HSTu, STu’(t)} 

      =  min{GTu,Tu’(t), HSTu,STu'(t)}. 

Further using inequality (3.2), we have 

    GTu,Tu’(kt) = GTRSTu, TRSTu’(kt) 

min{GTu,Tu’(t), GTu,TRSTu(t), GTu’,TRSTu’(t), HSTu, STu’(t), FRSTu,RSTu’(t)}       

=  min{Fu,u’(t), HSTu,STu'(t)}. 

Hence, we have 

 Fu,u’(kt) HSTu,STu’(t). 

And finally on using inequality (3.3), we now have 

 Fu,u’(kt) HSTu, STu’(t) = HSTRSTu, STRSTu’(t) 

        k
2
max{HSTu,STu’(t), HSTu,STRSTu(t), HSTu’,STRSTu’(t), FRSTu, RSTu’(t), GTRSTu,TRSTu’(t)} 

k
2
max{HSTu,STu’(t), Fu,u’(t), GTu,Tu’(t)}. 

Since k < 1, it follows that u = u’ and the uniqueness of u follows. 

Similarly, it can be proved that v is the unique fixed point of the TRS and w is the unique fixed point of STR. 

We finally prove that we also have 
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4Rw = R(STRw) = RST(Rw) 

and so Rw is the fixed point of RST.  Since u is the unique fixed point of RST, it follows that  Rw = u. 

This completes the proof of the theorem.  

 

Theorem 3.2. Let (X1, F1, *), (X2, F2, *), (X3, F3, *) and (X4, F4, *) be the complete Menger spaces, where * is a 

continuous t-norm (i.e. min t-norm). If T1 is a continuous continuous mapping of X1 into X2, T2 be a continuous 

mapping of X2 into X3, T3 be a continuous mapping of X3 into X4 and T4 be a mapping of X4 into X1 satisfying the 

inequalities :  

(3.7) 
4 3 2 1 1 4 3 2 1 11 T T T T x , T T T T x 'F (kt)  

1 1 1 4 3 2 1 1 1 4 3 2 1 11 x ,x ' 1 x ,T T T T x 1 x ',T T T T x 'min{F (t),F (t),F (t),  

     
1 1 1 1 2 1 1 2 1 1 3 2 1 1 3 2 1 12 T x ,T x ' 3 T T x ,T T x ' 4 T T T x ,T T T x 'F (t),F (t),F (t)}  

(3.8) 
4 3 2 1 2 4 3 2 1 22 T T T T x , T T T T x 'F (kt)

2 2 2 1 4 3 2 2 2 1 4 3 2 22 x ,x ' 2 x ,T T T T x 2 x ',T T T T x 'min{F (t),F (t),F (t),  

      
2 2 2 2 3 2 2 3 2 2 4 3 2 2 4 3 2 23 T x ,T x ' 4 T T x ,T T x ' 1 T T T x ,T T T x 'F (t),F (t),F (t)}  

(3.9) 
2 1 4 3 3 2 1 4 3 33 T T T T x , T T T T x 'F (kt)

3 3 3 2 1 4 3 3 3 2 1 4 3 33 x ,x ' 3 x ,T T T T x 3 x ',T T T T x 'min{F (t),F (t),F (t),  

      
3 3 3 3 4 3 3 4 3 3 1 4 3 3 1 4 3 34 T x ,T x ' 1 T T x ,T T x ' 2 T T T x ,T T T x 'F (t),F (t),F (t)}  

(3.10) 
3 2 1 4 4 3 2 1 4 44 T T T T x , T T T T x 'F (kt)

4 4 4 3 2 1 4 4 4 3 2 1 4 44 x ,x ' 4 x ,T T T T x 4 x ',T T T T x 'min{F (t),F (t),F (t),  

      
4 4 4 4 1 4 4 1 4 2 1 4 4 2 1 4 441 T x ,T x ' 2 T T x ,T T x ' 3 T T T x ,T T T x 'F (t),F (t),F (t)}  

for all x1, x1’  X1, x2, x2’  X2, x3, x3’  X3, x4, x4’  X4,  where 0 k  1.  

Then T4T3T2T1 has a unique fixed point 1 in X1,  T1T4T3T2 has a unique fixed point 2 in X2,  T2T1T4T3 has a 

unique fixed point 3 in X3 and T3T2T1T4 has a unique fixed point 4 in X4. 

 

Proof.  Let 0

1x  be an arbitrary point in X1. Define the sequences  1

nx ,  2

nx ,  3

nx  and  4

nx  in X1, X2, X3 and X4 

respectively by  

 
n 0 1

4 3 2 1 1 nT T T T x x  

 1 2

1 n 1 nT x x   

2 3

2 n nT x x  

3 4

3 n nT x x  

4 1

4 n nT x x   for n = 1, 2, 3, … .  

Now applying inequality (3.8), we get 

      2 2 2 2
n n 1 1 4 3 2 n 1 1 4 3 2 n

2x ,x 2 T T T T x , T T T T x
F (kt) F (t)

 

   
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          2 2 2 2 2 2
n 1 n n 1 1 4 3 2 n 1 n 1 4 3 2 n2 x ,x 2x ,T T T T x 2 x ,T T T T x

min{F (t),F (t),F (t),
  

           

                               2 2 2 2 2 2
2 n 1 2 n 3 2 n 1 3 2 n 4 3 2 n 1 4 3 2 n3 T x ,T x 4 T T x ,T T x 1 T T T x ,T T T x

F (t),F (t),F (t)}
  

 

     2 2
n n 1

2x ,x
F (kt)



 2 2 2 2 2 2
n 1 n n 1 n n n 12 x ,x 2x ,x 2 x ,x

min{F (t),F (t),F (t),
  

  3 3 4 4 1 1
n 1 n n 1 n n 1 n3 x ,x 4 x ,x 1x ,x

F (t),F (t),F (t)}
  

 

     2 2
n n 1

2x ,x
F (kt)



 1 2 2 2 3 3
n 1 n n 1 n n 1 n1 x ,x 2x ,x 3 x ,x

min{F (t),F (t),F (t),
  

  . 3 3 4 4
n 1 n n 1 n3 x ,x 4 x ,x

F (t),F (t)}
 

 .           (3.11) 

Using inequality (3.9), we get 

     3 3 3 3
n n 1 2 1 4 3 n 1 2 1 4 3 n

3x ,x 3 T T T T x , T T T T x
F (kt) F (t)

 

   

                     3 3 3 3 3 3
n 1 n n 1 2 1 4 3 n 1 n 2 1 4 3 n3 x ,x 3x ,T T T T x 3 x ,T T T T x

min{F (t),F (t),F (t),
  

  

           3 3 3 3 3 3
3 n 1 3 n 4 3 n 1 4 3 n 1 4 3 n 1 1 4 3 n4 T x ,T x 1 T T x ,T T x 2 T T T x ,T T T x

F (t),F (t),F (t)}
  

                                    (3.12) 

   3 3
n n 1

3x ,x
F (kt)



 3 3 3 3 3 3
n 1 n n 1 n n n 13 x ,x 3x ,x 3 x ,x

min{F (t),F (t),F (t),
  

  4 4 1 1 2 2
n 1 n n 1 n n 1 n4 x ,x 1 x ,x 2x ,x

F (t),F (t),F (t)}
  

 

   3 3
n n 1

3x ,x
F (kt)



 1 1 2 2 3 3
n 1 n n 1 n n 1 n1 x ,x 2x ,x 3 x ,x

min{F (t),F (t),F (t),
  

  4 4
n 1 n4 x ,x

F (t)}


.       

Using inequality (3.10), we get 

         4 4 4 4
n n 1 3 2 1 4 n 1 3 2 1 4 n

4x ,x 4 T T T T x , T T T T x
F (kt) F (t)

 

   

4 4 4 4 4 4
n 1 n n 1 3 2 1 4 n 1 n 3 2 1 4 n4 x ,x 4x ,T T T T x 4 x ,T T T T x

min{F (t),F (t),F (t),
  

  

           4 4 4 4 4 4
4 n 1 4 n 1 4 n 1 1 4 n 2 1 3 n 1 2 1 3 n1 T x ,T x 2 T T x ,T T x 3 T T T x ,T T T x

F (t),F (t),F (t)}
  

                                       (3.13) 

       4 4
n n 1

4x ,x
F (kt)



 4 4 4 4 4 4
n 1 n n 1 n n n 14 x ,x 4x ,x 4 x ,x

min{F (t),F (t),F (t),
  

   1 1 2 2 3 3
n 1 n n n 1 n n 11 x ,x 2 x ,x 3x ,x

F (t),F (t),F (t)}
  

 

       4 4
n n 1

4x ,x
F (kt)



 1 1 2 2 3 3
n 1 n n 1 n n 1 n1 x ,x 2x ,x 3 x ,x

min{F (t),F (t),F (t),
  

  4 4
n 1 n4 x ,x

F (t)}


.      

Using inequality (3.7), we get 

        1 1 1 1
n n 1 4 3 2 1 n 1 4 3 2 1 n

1x ,x 1 T T T T x , T T T T x
F (t) F (t)

 

   

                       1 1 1 1 1 1
n 1 n n 1 4 3 2 1 n 1 n 4 3 2 1 n1 x ,x 1x ,T T T T x 1 x ,T T T T x

min{F (t),F (t),F (t),
  

  

           1 1 1 1 1 1
1 n 1 1 n 2 1 n 1 2 1 n 3 2 1 n 1 3 2 1 n2 T x ,T x 3 T T x ,T T x 4 T T T x ,T T T x

F (t),F (t),F (t)}
  

                                     (3.14) 

   1 1
n n 1

1x ,x
F (kt)



 1 1 1 1 1 1
n 1 n n 1 n n n 11 x ,x 1x ,x 1 x ,x

min{F (t),F (t),F (t),
  

  2 2 3 3 4 4
n n 1 n n 1 n n 12 x ,x 3 x ,x 4x ,x

F (t),F (t),F (t)}
  

 

   1 1
n n 1

1x ,x
F (kt)



 1 1 2 2 3 3
n 1 n n 1 n n 1 n1 x ,x 2x ,x 3 x ,x

min{F (t),F (t),F (t),
  

  4 4
n 1 n4 x ,x

F (t)}


.       

By induction on using inequalities (3.11), (3.12), (3.13) and (3.14),  we get 

   1 1
n n 1

n 1

1x ,x
F (k t)



  1 1 2 2 3 3
1 2 1 2 1 21 x ,x 2x ,x 3 x ,x

min{F (t),F (t),F (t), 4 4
1 14 x ,x

F (t)}  

  2 2
n n 1

n 1

2x ,x
F (k t)



  1 1 2 2 3 3
1 2 1 2 1 21 x ,x 2x ,x 3 x ,x

min{F (t),F (t),F (t),  4 4
1 24 x ,x

F (t)}  

  3 3
n n 1

n 1

3x ,x
F (k t)



  1 1 2 2 3 3 4 4
1 2 1 2 1 2 1 21 x ,x 2x ,x 3 x ,x 4 x ,x

min{F (t),F (t),F (t),F (t)}   

  4 4
n n 1

n 1

4x ,x
F (k t)



  1 1 2 2 3 3 4 4
1 2 1 2 1 2 1 21 x ,x 2x ,x 3 x ,x 4 x ,x

min{F (t),F (t),F (t),F (t)}  . 
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Since k < 1, it follows that  1

nx ,  2

nx ,  3

nx  and  4

nx  are Cauchy sequences with limit 1, 2, 3 and 4 in X1, 

X2, X3 and X4 respectively.  Since T1, T2, T3 and T4 are continuous, we have 

 
n
lim


2

nx  = 
n
lim


T1
1

nx  =  T11 = 2, 

n
lim


3

nx  = 
n
lim


T2
2

nx  =  T22 = 3, 

n
lim


4

nx  = 
n
lim


T3
3

nx  =  T33 = 4. 

Using inequality (3.7) again, we have 

1 1
4 3 2 1 1 4 3 2 1 1n 4 3 2 1 n 1

1 T T T T 1 T T T T ,,x T T T T x
F (kt) F (t)


    

     1 1 1
1 1 4 3 2 1 1n 1 n 1 4 3 2 1 n 1

1 , 1 ,T T T Tx 1 x ,T T T T x
min{F (t),F (t),F (t),

  
   1 1 1

1 1 2 1 1 3 2 1 11 n 1 2 1 n 1 3 2 1 n 1
2 T , 3 T T , 4 T T T ,T x T T x T T T x

F (t),F (t),F (t)}
  

  
. 

Since T1, T2, T3 are continuous, it follows on letting n that 

 
4 3 2 1 1 1 1 4 3 2 1 11 T T T T , 1 , T T T TF (kt) min{F (t)}.     

Thus, we have T4T3T2T11 = 1, since k < 1 and  1 is a fixed point of T4T3T2T1. 

T1T4T3T22 = T1T4T3T2T11 =  T11 = 2  , 

T2T1T4T33 = T2T1T4T3T22 =  T22 = 3  and 

T3T2T1T44 = T3T2T1T4T33 =  T33 = 4.   

Hence, 2, 3 and 4 are the fixed points of T1T4T3T2, T2T1T4T3 and T3T2T1T4 respectively. 

Uniqueness : 

Suppose that T4T3T2T1 has another fixed point 1.   

Then using inequality (3.7), we have 

1 1 4 3 2 1 1 4 3 2 1 11 , ' 1 T T T T , T T T T 'F (kt) F (t)      

    
1 1 1 4 3 2 1 1 1 4 3 2 1 11 , ' 1 ,T T T T 1 ',T T T T 'min{F (t),F (t),F (t),       

1 1 1 1 2 1 1 2 1 1 3 2 1 1 3 2 1 12 T ,T ' 3 T T ,T T ' 4 T T T ,T T T 'F (t),F (t),F (t)}       (3.15) 

1 11 , 'F (kt)   
1 1 1 1 1 11 , ' 1 , 1 ', 'min{F (t),F (t),F (t),       

1 1 1 1 2 1 1 2 1 1 3 2 1 1 3 2 1 11 T ,T ' 3 T T ,T T ' 4 T T T ,T T T 'F (t),F (t),F (t)}       

Using inequality (3.8), we have 

1 1 1 1 1 4 3 2 1 1 1 4 3 2 1 12 T ,T ' 2 T T T T T , T T T T T 'F (kt) F (t)      

                     
1 1 1 1 1 1 1 4 3 2 1 1 1 1 1 4 3 2 1 12 T ,T ' 2 T ,T T T T T 2 T ',T T T T T 'min{F (t),F (t),F (t),       

   
2 1 1 1 1 1 3 2 1 1 3 2 1 1 4 3 2 1 1 4 3 2 1 13 T T ,T T ' 4 T T T ,T T T ' 4 T T T T ,T T T T 'F (t),F (t),F (t)}             

1 1 1 12 T ,T 'F (kt)   
1 1 1 1 1 1 1 1 1 1 1 12 T ,T ' 2 T ,T ' 1 T ',T 'min{F (t),F (t),F (t),       

2 1 1 2 1 1 3 2 1 1 3 2 1 1 4 3 2 1 1 4 3 2 1 13 T T ,T T ' 4 T T T ,T T T ' 1 T T T T ,T T T T 'F (t),F (t),F (t)}       

1 1 1 12 T ,T 'F (kt)   
1 1 1 1 2 1 1 2 1 1 3 2 1 1 3 2 1 12 T ,T ' 3 T T ,T T ' 4 T T T ,T T T 'min{F (t),F (t),F (t),     

1 11 , 'F (t)}   

1 1 1 12 T ,T 'F (kt)   
2 1 1 2 1 1 3 2 1 1 3 2 1 1 1 13 T T ,T T ' 4 T T T ,T T T ' 1 , 'min{F (t),F (t),F (t)}      . 
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Now we write 

1 1 1 12 T ,T 'F (kt)   
1 1 1 1 1 1 12 2 3 2 1 1 1 1 13 23 T , T ' 4 T , T T T T T T T ' 2 T ,T 'min{F (t),F (t),F (t),       

1 1 1 1 3 2 1 1 3 2 1 1 1 13 T ,T ' 4 T T T ,T T T ' 1 , 'F (t),F (t),F (t)}                                                (3.16) 

1 1 1 12 T ,T 'F (kt)   
2 1 1 2 1 1 3 2 1 1 3 2 1 13 T T ,T T ' 4 T T T ,T T T 'min{F (t),F (t)}    . 

Similarly, on using inequality (3.9), we have 

2 1 1 2 1 13 T T ,T T 'F (kt)   
2 1 1 2 1 1 2 1 1 2 1 4 3 2 1 1 2 1 1 2 1 4 3 2 1 13 T T ,T T ' 2 T T ,T T T T T T ' 3 T T ',T T T T T T 'min{F (t),F (t),F (t),       

             
3 2 1 1 3 2 1 1 4 3 2 1 1 4 3 2 1 1 1 4 3 2 1 1 1 4 3 2 1 14 T T T ,T T T ' 1 T T T T ,T T T T ' 2 T T T T T ,T T T T T 'F (t),F (t),F (t)}       

2 1 1 2 1 13 T T ,T T 'F (kt)   
2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 13 T T ,T T ' 3 T T ,T T ' 3 T T ',T T 'min{F (t),F (t),F (t),       

             
3 2 1 1 3 2 1 1 1 1 1 1 1 14 T T T ,T T T ' 1 , ' 2 T ,T 'F (t),F (t),F (t)}                                              (3.17) 

2 1 1 2 1 13 T T ,T T 'F (kt)   
3 2 1 1 3 2 1 1 1 1 1 1 1 14 T T T ,T T T ' 1 , ' 2 T ,T 'min{F (t),F (t),F (t)}       

2 1 1 2 1 13 T T ,T T 'F (kt)  3 2 1 1 3 2 1 1 1 1 1 1 2 1 1 2 1 1 3 2 1 1 3 2 1 14 T T T ,T T T ' 2 T ,T ' 3 T T ,T T ' 4 T T T ,T T T 'min{F (t),F (t),F (t),F (t)}        . 

Using inequality (3.16) and (3.17), we have 

2 1 1 2 1 13 T T ,T T 'F (kt)   
3 2 1 1 3 2 1 14 T T T ,T T T 'min{F (t)}.                                           (3.18) 

Similarly, on using inequalities (3.10), (3.16) and (3.18), we have 

3 2 1 1 3 2 1 14 T T T ,T T T 'F (kt)   
1 11 , 'F (t).                                  (3.19) 

Using inequalities (3.15), (3.16), (3.18) and (3.19), we have 

1 1 1 1 1 11 , ' 2 T ,T 'F (kt) F (t)     

1 1 2 1 1 2 1 1

2

1 , ' 3 T T ,T T 'F (k t) F (t)     

1 1 3 2 1 1 3 2 1 1

3

1 , ' 4 T T T ,T T T 'F (k t) F (t)     

1 1 1 1

4

1 , ' 1 , 'F (k t) F (t).     

Now, we have 

1 1 1 1

4

1 , ' 1 , 'F (k t) F (t).     

Since 0 k < 1, we have  

 
1 11 , 'F (t) 0    

           1 1 '    

proving the uniqueness of 1. 

We can similarly prove that T1T4T3T2 has  a unique fixed point 2 in X2, T2T1T4T3 has a unique  fixed point 3 in X3 

and T3T2T1T4 has a unique fixed point 4 in X4. 
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IV. CONCLUSION 

In this paper, we established two related fixed point theorems for four mappings in four Menger spaces which 

generalizes and extends the result of Gupta [4] in four metric spaces.  
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