Vol. No.5, Issue No. 07, July 2017

www.ijates.com

An inequality for generalized normalized δ-Casorati

curvatures for bi-slant submanifolds of cosymplectic space form

Mehraj Ahmad Lone¹, Abdul Gaffar Lone²

¹ Department of Mathematics, Central University of Jammu, Jammu (India)

²Department of Physics, Pondicherry University, R.V. Nagar, Kalapet, Pondicherry (India)

ABSTRACT

In this paper, we prove an optimal inequality for the normalized scalar curvature and the generalized normalized δ -Casorati curvatures for bi-slant submanifolds of cosymplectic space forms. Moreover, we characterize those submanifolds for which the equality holds.

Keywords: Casorati curvature, cosymplectic space form, scalar curvature. 2010 Mathematics Subject Classification: 53B05, 53B20, 53C40.

I. INTRODUCTION

The Casorati curvature(extrinsic invariant) of a submanifold of a Riemannian manifold introduced by Casorati defined as the normalized square length of the second fundamental form [2]. The concept of Casorati curvature extends the concept of the principal direction of a hypersurface of a Riemannian manifold [11]. The geometrical meaning and the importance of the Casorati curvature discussed by some distinguished geometers [7], [8], [14], [25], [26]. Therefore it attracts the attention of geometers to obtain the optimal inequalities for the Casorati curvatures of the submanifolds of different ambient spaces [17], [18], [23].

In this paper, we will study the inequalities for the generalized normalized δ -Casorati curvature for bi-slant submanifolds of cosymplectic space forms.

II. PRELIMINARIES

Let \overline{M} be a (2m+1)-dimensional almost contact metric manifold with structure (ϕ, ξ, η, g) where ϕ is a tensor field of type (1,1), ξ a vector field, η is a one form and g is the Riemannian metric on \overline{M} . Then they satisfy

$$\phi^2 = -I + \eta \otimes \xi$$
, $\eta(\xi) = 1$, $g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y)$.

These conditions also imply that

$$\phi\,\xi=0,\quad \eta\,(\phi X)=0,\quad \eta(X)=g(X,\xi),$$

Vol. No.5, Issue No. 07, July 2017

www.ijates.com and

$$g(\phi X, Y) + g(X, \phi Y) = 0,$$

for all vector fields X, Y in $T\overline{M}$. Where $T\overline{M}$ denotes the Lie algebra of vector fields on \overline{M} . An almost contact metric manifold \overline{M} is said to be a cosymplectic manifold if

$$(\overline{\nabla}_X \phi) Y = 0 \text{ and } \overline{\nabla}_X \xi = 0.$$
 (1)

where $\overline{\nabla}$ denotes the Levi-Civita connection on \overline{M} . The curvature tensor \overline{R} for cosymplectic space forms is defined as

$$\overline{R}(X,Y)Z = \frac{c}{4} \{ g(Y,Z)X - g(X,Z)Y + \eta(X)\eta(Z)Y - \eta(Y)\eta(Z)X + \eta(Y)g(X,Z)\xi - \eta(X)g(Y,Z)\xi - g(\phi X,Z)\phi Y + g(\phi Y,Z)\phi X + 2g(X,\phi Y)\phi Z \}$$
(2)

for all $X, Y, Z \in T\overline{M}$.

Let M be a submanifold of an almost contact metric manifold \overline{M} with induced metric g. We write

$$\phi X = PX + FX$$

for any $X \in TM$, PX and FX denote the tangential and normal parts of ϕX respectively. The equation of Gauss is given by

$$\overline{R}(X, Y, Z, W) = R(X, Y, Z, W) + g(h(X, Z), h(Y, W)) - g(h(X, W), h(Y, Z))$$
(3)

for $X, Y, Z, W \in TM$, where \overline{R} and R represent the curvature tensor of \overline{M} and M respectively. The squared norm of P at $p \in M$ is defined as

$$||P||^2 = \sum_{i,j=1}^n g^2(\varphi e_i, e_j),$$
 (4)

where $\{e_1, \dots, e_n, e_{n+1} = \xi\}$ is any orthonormal basis of the tangent space TM of M.

A submanifold M is said to be a slant submanifold if for any $p \in M$ and a non zero vector $X \in T_pM$, the angle between JX and T_pM is constant, i.e., the angle does not depend on the choice of $p \in M$ and $X \in T_pM$. The angle $\theta \in [0, \frac{\pi}{2}]$ is called the slant angle.

In general, if a submanifold M admits two orthogonal distributions D^{θ_1} and D^{θ_2} , such that (i) $T \mathcal{N} = D^{\theta_1} \oplus D^{\theta_2}$

(ii) For any $i = 1, 2, D^{\theta_i}$ is the slant distribution with slant angle θ_i

Vol. No.5, Issue No. 07, July 2017

www.ijates.com

ijates ISSN 2348 - 7550

is known as *Bi-slant submanifold*. Naturally, the bi-slant submanifolds is a generalization of semi-slant submanifolds and hemi-slant submanifolds. The invariant, anti-invariant, CR-submanifolds, slant submanifolds appears as particular cases:

- (i) If $\theta_1 = \theta_2 = 0$, bi-slant submanifolds is invariant submanifold.
- (ii) If $\theta_1 = \theta_2 = \frac{\pi}{2}$, bi-slant submanifolds is anti-invariant submanifold.
- (iii) If $\theta_1 = 0$ and $\theta_2 = \frac{\pi}{2}$, bi-slant submanifolds is CR-submanifold.
- (iv) If $\theta_1 = 0$ and $\theta_2 \neq 0$, bi-slant submanifolds is semi-slant submanifold.
- (v) If $\theta_1 = \frac{\pi}{2}$ and $\theta_2 \neq \frac{\pi}{2}$, bi-slant submanifolds is hemi-slant submanifold.

Suppose M be a bi-slant submanifold of a cosymplectic space form \overline{M} . Let $p \in M$ and $\{e_1, \ldots, e_n = \xi\}$ an orthonormal basis of T_pM , with

$$\begin{split} e_1, e_2 &= \frac{1}{\cos\theta} Pe_1, \dots, e_{2n_1-1}, e_{2n_1} = \frac{1}{\cos\theta} Pe_{2n_1-1}, e_{2n_1+1}, e_{2n_1+2} = \frac{1}{\cos\theta} Pe_{2n_1+1}, \\ &\dots, e_{2n_1+2n_2-1}, e_{2n_1+2n_2} = \frac{1}{\cos\theta} Pe_{2n_1+2n_2-1}, e_{2n_1+2n_2+1} = \xi, \end{split}$$

we have

$$g(\phi e_1, e_2) = g(\phi e_1, \frac{1}{\cos \theta} Pe_1) = \frac{1}{\cos \theta} g(Pe_1, Pe_1) = \cos \theta.$$

Similarly, we have

$$g^2(\phi e_1, e_2) = \cos^2 \theta,$$

thus, we have

$$g^{2}(\phi e_{i}, e_{j}) = \begin{cases} \cos^{2}\theta_{1}, & \text{for } i = 1, \dots, 2n_{1} - 1\\ \cos^{2}\theta_{2}, & \text{for } i = 2n_{1} + 1, \dots, 2n_{1} + 2n_{2} - 1 \end{cases}$$
 (5)

Let M be a Riemannian manifold and $K(\pi)$ denotes the sectional curvature of M of the plane section $\pi \subset T_pM$ at a point $p \in M$. If $\{e_1, \ldots, e_n\}$ and $\{e_{n+1}, \ldots, e_{2m+1}\}$ be the orthonormal basis of T_pM and $T_p^{\perp}M$ at any $p \in M$, then the scalar curvature τ at that point is given by

$$\tau(p) = \sum_{1 \le i \le j \le n} K(e_i \wedge e_j)$$

and the normalized scalar curvature ρ is defined as

$$\rho = \frac{2\tau}{n(n+1)}.$$

The mean curvature vector denoted by H is defined as

$$H = \frac{1}{n} \sum_{i,j=1}^{n} h(e_i, e_i)$$

Vol. No.5, Issue No. 07, July 2017

www.ijates.com and also we put

$$h_{ij}^{\gamma} = g(h(e_i, e_j), e_{\gamma}), i, j \in \{1, 2, ..., n, \gamma \in \{n+1, n+2, ..., 2m+1\}.$$

The squared norm of mean curvature of the submanifold is defined by

$$||H||^2 = \frac{1}{n^2} \sum_{\gamma=n+1}^{2m+1} \left(\sum_{i=1}^n h_{ii}^{\gamma} \right)^2$$

and the squared norm of second fundamental form h is denoted by $\mathscr C$ defined as

$$\mathscr{C} = \frac{1}{n} \sum_{\gamma=n+1}^{2m+1} \sum_{i,j=1}^{n} \left(h_{ij}^{\gamma} \right)^2$$

known as Casorati curvature of the submanifold.

If we suppose that L is an r-dimensional subspace of TM, $r \ge 2$, and $\{e_1, e_2, \dots, e_r\}$ is an orthonormal basis of L. then the scalar curvature of the r-plane section L is given as

$$\tau(L) = \sum_{1 \le \gamma < \beta \le r} K(e_{\gamma} \wedge e_{\beta})$$

and the Casorati curvature \mathscr{C} of the subspace L is as follows

$$\mathscr{C}(L) = \frac{1}{r} \sum_{\gamma=n+1}^{2m+1} \sum_{i,j=1}^{n} (h_{ij}^{\gamma})^{2}.$$

A point $p \in M$ is said to be an invariantly quasi-umbilical point if there exist 2m - n + 1 mutually orthogonal unit normal vectors $\xi_{n+1}, \dots, \xi_{2m+1}$ such that the shape operators with respect to all directions ξ_{γ} have an eigenvalue of multiplicity n-1 and that for each ξ_{γ} the distinguished eigen direction is the same. The submanifold is said to be an invariantly quasi-umbilical submanifold if each of its points is an invariantly quasi-umbilical point.

The normalized δ -Casorati curvature $\delta_c(n-1)$ and $\widehat{\delta_c}(n-1)$ are defined as

$$[\delta_c(n-1)]_p = \frac{1}{2}\mathscr{C}_p + \frac{n+1}{2n}\inf\{\mathscr{C}(L)|L: \text{a hyperplane of } T_pM\}$$
 (6)

and

$$[\widehat{\delta}_c(n-1)]_p = 2\mathscr{C}_p + \frac{2n-1}{2n} \sup \{\mathscr{C}(L)|L: \text{a hyperplane of } T_pM\}. \tag{7}$$

Some authors use the coefficient $\frac{n+1}{2n(n-1)}$ instead of $\frac{2n-1}{2n}$ in the equation (7). It was pointed out that the coefficient $\frac{n+1}{2n(n-1)}$ is not suitable and therefore modified by the coefficient $\frac{2n-1}{2n}$. For a positive real number $t \neq n(n-1)$, the generalized normalized δ -Casorati curvatures $\delta_c(t;n-1)$ and $\widehat{\delta}_c(t;n-1)$ are given as

Vol. No.5, Issue No. 07, July 2017

www.ijates.com

$$[\delta_c(t;n-1)]_p = t\mathscr{C}_p + \frac{1}{nt}(n-1)(n+t)(n^2-n-t)\inf\{\mathscr{C}(L)|L: \text{a hyperplane of } T_pM\},$$

if
$$0 < t < n^2 - n$$
, and

$$[\widehat{\delta}_c(t;n-1)]_p = r\mathscr{C}_p + \frac{1}{nt}(n-1)(n+t)(n^2-n-t)\sup\{\mathscr{C}(L)|L: \text{ a hyperplane of } T_pM\},$$
if $t > n^2-n$.

III. MAIN THEOREM

Theorem 3.1. Let M be a n+1-dimensional bi-slant submanifold of a cosymplec space form \overline{M} of dimension 2n+1. Then

(i) The generalized normalized δ -Casorati curvature $\delta_c(t; n-1)$ satisfies

$$\rho \leq \frac{\delta_c(t; n-1)}{n(n-1)} + \frac{c}{4} \frac{(n-1)}{n+1} + 3\frac{c}{2} [n_1 cos^2 \theta_1 + n_2 cos^2 \theta_2]. \tag{8}$$

for any real number t such that 0 < t < n(n-1).

(ii) The generalized normalized δ -Casorati curvature $\widehat{\delta}_c(t;n-1)$ satisfies

$$\rho \le \frac{\widehat{\delta_c}(t; n-1)}{n(n-1)} + \frac{c}{4} \frac{(n-1)}{n+1} + 3\frac{c}{2} [n_1 cos^2 \theta_1 + n_2 cos^2 \theta_2]. \tag{9}$$

for any real number t > n(n-1). Moreover, the equality holds in (8) and (9) iff M is an invariantly quasi-umbilical submanifold with trivial normal connection in \overline{M} , such that with respect to suitable tangent orthonormal frame $\{e_1, \ldots, e_n\}$ and normal orthonormal frame $\{e_{n+1}, \ldots, e_{2m+1}\}$, the shape operator $S_r \equiv S_{e_r}$, $r \in \{n+1, \ldots, m\}$, take the following form

$$S_{n+1} = \begin{pmatrix} a & 0 & 0 & \dots & 0 & 0 \\ 0 & a & 0 & \dots & 0 & 0 \\ 0 & 0 & a & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a & 0 \\ 0 & 0 & 0 & \dots & 0 & \frac{n(n-1)}{t}a \end{pmatrix}, \qquad S_{n+2} = \dots = S_m = 0.$$
 (10)

Proof. Let $\{e_1, \dots, e_n\}$ and $\{e_{n+1}, \dots, e_{2m+1}\}$ be the orthonormal basis of T_pM and $T_p^{\perp}M$ respectively at any point $p \in M$. Putting $X = W = e_i$, $Y = Z = e_j$, $i \neq j$ from (2), we have

$$\overline{R}(e_{i}, e_{j}, e_{j}, e_{i}) = \frac{c}{4} \{g(e_{j}, e_{j})g(e_{i}, e_{i}) - g(e_{i}, e_{j})g(e_{j}, e_{i})\} + \frac{c}{4} \{\eta(e_{i})\eta(e_{j})g(e_{j}, e_{i}) - \eta(e_{j})\eta(e_{j})g(e_{i}, e_{i}) + \eta(e_{j})\eta(e_{i})g(e_{i}, e_{j}) - \eta(e_{i})\eta(e_{i})g(e_{j}, e_{j}) - g(\phi e_{i}, e_{j})g(\phi e_{j}, e_{i}) + g(\phi e_{j}, e_{j})g(\phi e_{i}, e_{i}) + 2g(e_{i}, \phi e_{j})g(\phi e_{j}, e_{i})\} (11)$$

From Gauss equation and (11), we have

Vol. No.5, Issue No. 07, July 2017

www.ijates.com

ijates ISSN 2348 - 7550

$$\frac{c}{4}\{g(e_{j},e_{j})g(e_{i},e_{i}) - g(e_{i},e_{j})g(e_{j},e_{i})\} + \frac{c}{4}\{\eta(e_{i})\eta(e_{j})g(e_{j},e_{i}) - \eta(e_{j})\eta(e_{j})g(e_{i},e_{i}) + \eta(e_{j})\eta(e_{i})g(e_{i},e_{j}) - \eta(e_{i})\eta(e_{i})g(e_{j},e_{j}) - g(\phi e_{i},e_{j})g(\phi e_{j},e_{i}) + g(\phi e_{j},e_{j})g(\phi e_{i},e_{i}) + 2g(e_{i},\phi e_{j})g(\phi e_{j},e_{i})\} = R(e_{i},e_{j},e_{j},e_{i}) - g(h(e_{i},e_{i}),h(e_{j},e_{j})) + g(h(e_{i},e_{j}),h(e_{j},e_{i})) \tag{12}$$

By taking summation $1 \le i, j \le n$, we have

$$2\tau = (n+1)^2 ||H||^2 - (n+1)\mathcal{C} + \frac{c}{4}n(n+1) + \frac{c}{4}\{-2n+3\sum_{i,i=1}^{m+1} g^2(\phi e_i, e_j)\}$$
 (13)

Using (5), we get

$$2\tau = (n+1)^2 ||H||^2 - (n+1)\mathscr{C} + \frac{c}{4}n(n-1))$$

$$+3\frac{c}{4}\sum_{i,j=1}^{m+1} g^2(\phi e_i, e_j)\}.$$
(14)

Define the following function, denoted by \mathcal{Q} , a quadratic polynomial in the components of the second fundamental form

$$\mathcal{Q} = t\mathcal{C} + a(t)\mathcal{C}(L) - 2\tau + \frac{c}{4}\{n(n-1)\} + 3\frac{c}{4}\sum_{i,j=1}^{m+1}g^2(\phi e_i, e_j)\},\tag{15}$$

where L is the hyperplane of T_pM . Without loss of generality, we suppose that L is spanned by e_1, \ldots, e_{n-1} , it follows from (15) that

$$\mathcal{Q} = \frac{n+t}{n} \sum_{\gamma=n+1}^{m} \sum_{i,j=1}^{n} (h_{ij}^{\gamma})^{2} + \frac{a(t)}{n-1} \sum_{\gamma=n+1}^{m} \sum_{i,j=1}^{n-1} (h_{ij}^{\gamma})^{2} - \sum_{\gamma=n+1}^{m} \left(\sum_{i=1}^{n} h_{ii}^{\gamma}\right)^{2}$$

which can be easily written as

$$\mathcal{Q} = \sum_{\gamma=n+1}^{m} \sum_{i=1}^{n-1} \left[\left(\frac{n+t}{n} + \frac{a(t)}{n-1} \right) (h_{ii}^{\gamma})^{2} + \frac{2(n+t)}{n} (h_{in}^{\gamma})^{2} \right] + \sum_{n+1}^{m} \left[2 \left(\frac{n+t}{n} + \frac{a(t)}{n-1} \right) \sum_{(i
(16)$$

From (16), we can see that the critical points

$$h^{c} = (h_{11}^{n+1}, h_{12}^{n+1}, \dots, h_{nn}^{n+1}, \dots, h_{11}^{m}, \dots, h_{nn}^{m})$$

of \mathcal{Q} are the solutions of the following system of homogenous equations:

Vol. No.5, Issue No. 07, July 2017

www.ijates.com

ijates ISSN 2348 - 7550

$$\begin{cases} \frac{\partial \mathcal{Q}}{\partial h_{ii}^{\gamma}} = 2\left(\frac{n+t}{n} + \frac{a(t)}{n-1}\right)(h_{ii}^{\gamma}) - 2\sum_{k=1}^{n} h_{kk}^{\gamma} = 0\\ \frac{\partial \mathcal{Q}}{\partial h_{ni}^{\gamma}} = \frac{2t}{n} h_{nn}^{\gamma} - 2\sum_{k=1}^{n-1} h_{kk}^{\gamma} = 0\\ \frac{\partial \mathcal{Q}}{\partial h_{ij}^{\gamma}} = 4\left(\frac{n+t}{n} + \frac{a(t)}{n-1}\right)(h_{ij}^{\gamma}) = 0\\ \frac{\partial \mathcal{Q}}{\partial h_{in}^{\gamma}} = 4(\frac{n+t}{n}(h_{in}^{\gamma}) = 0, \end{cases}$$

$$(17)$$

where $i, j = \{1, 2, ..., n-1\}, i \neq j$, and $\gamma \in \{n+1, ..., m\}$.

Hence, every solution h^c has $h_{ij}^{\gamma} = 0$ for $i \neq j$ and the corresponding determinant to the first two equations of the above system is zero. Moreover, the Hessian matrix of \mathcal{Q} is of the following form

$$\mathscr{H}(\mathscr{Q}) = \left(\begin{array}{ccc} H_1 & O & O \\ O & H_2 & O \\ O & O & H_3 \end{array} \right),$$

where

$$H_{1} = \begin{pmatrix} 2\left(\frac{n+t}{n} + \frac{a(t)}{n-1}\right) - 2 & -2 & \dots & -2 & -2 \\ -2 & 2\left(\frac{n+t}{n} + \frac{a(t)}{n-1}\right) - 2 & \dots & -2 & -2 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots \\ -2 & -2 & \dots & 2\left(\frac{n+t}{n} + \frac{a(t)}{n-1}\right) - 2 & -2 & \dots \\ -2 & -2 & \dots & -2 & \frac{2t}{n} \end{pmatrix}$$

 H_2 and H_3 are the diagonal matrices and O is the null matrix of the respective dimensions. H_2 and H_3 are respectively given as

$$H_2 = diag\left(4\left(\frac{n+t}{n} + \frac{a(t)}{n-1}\right), 4\left(\frac{n+t}{n} + \frac{a(t)}{n-1}\right), \dots, 4\left(\frac{n+t}{n} + \frac{a(t)}{n-1}\right)\right),$$

and

$$H_3 = diag\left(\frac{4(n+t)}{n}, \frac{4(n+t)}{n}, \dots, \frac{4(n+t)}{n}\right).$$

Hence, we find that $\mathcal{H}(\mathcal{Q})$ has the following eigenvalues

$$\lambda_{11} = 0$$
, $\lambda_{22} = 2\left(\frac{2t}{n} + \frac{a(t)}{n-1}\right)$, $\lambda_{33} = \dots = \lambda_{nn} = 2\left(\frac{n+t}{n} + \frac{a(t)}{n-1}\right)$,

$$\lambda_{ij}=4\left(\frac{n+t}{n}+\frac{a(t)}{n-1}\right), \lambda_{in}=\frac{4(n+t)}{n}, \ \forall \ i,j\in\{1,2,\ldots,n-1\}, \ i\neq j.$$

Thus, \mathscr{Q} is parabolic and reaches at minimum $\mathscr{Q}(h^c) = 0$ for the solution h^c of the system (17). Hence $\mathscr{Q} \ge 0$ and hence

Vol. No.5, Issue No. 07, July 2017

www.ijates.com

1**Jates** ISSN 2348 - 7550

$$2\tau \le t\mathscr{C} + a(t)\mathscr{C}(L) + \frac{c}{4}\{n(n-1)\} + 3\frac{c}{4}\sum_{i,j=1}^{m+1}g^2(\phi e_i, e_j)\},\,$$

whereby, we obtain

$$\rho \leq \frac{t}{n(n-1)} \mathcal{C} + \frac{a(t)}{n(n-1)} \mathcal{C}(L) + \frac{c}{4} \frac{(n-1)}{n+1} + 3\frac{c}{2} [n_1 cos^2 \theta_1 + n_2 cos^2 \theta_2]$$

for every tangent hyperplane L of M. If we take the infimum over all tangent hyperplanes L, the result trivially follows. Moreover the equality sign holds iff

$$h_{ij}^{\gamma} = 0, \ \forall \ i, j \in \{1, \dots, n\}, \ i \neq j \ \text{and} \ \gamma \in \{n+1, \dots, m\}$$
 (18)

and

$$h_{nn}^{\gamma} = \frac{n(n-1)}{t} h_{11}^{\gamma} = \dots = \frac{n(n-1)}{t} h_{n-1}^{\gamma}, \forall \gamma \in \{n+1,\dots,m\}.$$
 (19)

From (18) and (19), we obtain that the equality holds if and only if the submanifold is invariantly quasi-umbilical with normal connections in \overline{M} , such that the shape operator takes the form (10) with respect to the orthonormal tangent and orthonormal frames.

In the same way, we can prove (ii).

Corollary 3.2. Let M be an n+1-dimensional bi-slant submanifold of a cosymplectic space form. Then

(i) The normalized δ -Casorati curvature $\delta_c(n-1)$ satisfies

$$\rho \leq \delta_c(n-1) + \frac{c}{4} \frac{(n-1)}{n+1} + 3\frac{c}{2} [n_1 \cos^2 \theta_1 + n_2 \cos^2 \theta_2].$$

Moreover, the equality sign holds iff M is an invariantly quasi-umbilical submanifold with trivial normal connection in \overline{M} , such that with respect to suitable tangent orthonormal frame $\{e_1,\ldots,e_{n+1}\}$ and normal orthonormal frame $\{e_{n+2},\ldots,e_{2m+1}\}$, the shape operator $S_r \equiv S_{e_r}$, $r \in \{n+1,\ldots,m\}$, take the following form

$$S_{n+1} = \begin{pmatrix} a & 0 & 0 & \dots & 0 & 0 \\ 0 & a & 0 & \dots & 0 & 0 \\ 0 & 0 & a & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & a & 0 \\ 0 & 0 & 0 & \dots & 0 & 2a \end{pmatrix}, S_{n+2} = \dots = S_m = 0.$$
 (20)

(ii) The normalized δ -Casorati curvature $\widehat{\delta}_c(n-1)$ satisfies

$$\rho \leq \widehat{\delta}_c(n-1) + \frac{c}{4} \frac{(n-1)}{n+1} + 3\frac{c}{2} [n_1 cos^2 \theta_1 + n_2 cos^2 \theta_2].$$

Vol. No.5, Issue No. 07, July 2017

www.ijates.com

ijates ISSN 2348 - 7550

Moreover, the equality sign holds iff M is an invariantly quasi-umbilical submanifold with trivial normal connection in \overline{M} , such that with respect to suitable tangent orthonormal frame $\{e_1,\ldots,e_{n+1}\}$ a and normal orthonormal frame $\{e_{n+2},\ldots,e_{2m+1}\}$, the shape operator $S_r \equiv S_{e_r}$, $r \in \{n+1,\ldots,m\}$, take the following form

$$S_{n+1} = \begin{pmatrix} 2a & 0 & 0 & \dots & 0 & 0 \\ 0 & 2a & 0 & \dots & 0 & 0 \\ 0 & 0 & 2a & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 2a & 0 \\ 0 & 0 & 0 & \dots & 0 & a \end{pmatrix}, S_{n+2} = \dots = S_m = 0.$$
 (21)

REFERENCES

- [1] Blair D.; Ledger A.- Quasi-umbilical, minimal submanifolds of Euclidean space, Simon Stevin, 51, 1977,3-22.
- [2] Casorati F.- Mesure de la courbure des surface suivant l'idee commune. Ses rapports avec les mesures de coubure gaussienne et moyenne, Acta Math., 14, 1999, 95-110.
- [3] Chen B. Y.- A general inequality for submanifolds in complex space forms and its applications, Arch. Math., 67, 1996, 519-528.
- [4] Chen B. Y.- Mean curvature and shape operator of isometric immersions in real space forms, Glasgow. Math. J., 38(1), 1996, 87-97.
- [5] Chen B. Y.- Relationship between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasgow. Math. J., 41, 1999, 33-41.
- [6] Chen B. Y.- Some pinching and classification theorems for minimal submanifolds, Arch. math., 60, 1993 568-578.
- [7] Decu S,; Haesen S.; Verstralelen L. Optimal inequalities involving Casorati curvatures, Bull. Transylv. Univ. Brasov, Ser B, 49, 2007, 85-93.
- [8] Decu S,; Haesen S.; Verstralelen L. Optimal inequalities characterizing quasi-umbilical submanifolds, J. Inequalities Pure. Appl. Math, 9, 2008, Article ID 79, 7pp.
- [9] Ghisoiu V. Inequalities for thr Casorati curvatures of the slant submanifolds in complex space forms, Riemannian geometry and applications. Proceedings RIGA 2011, ed. Univ. Bucuresti, Bucharest, 2011, 145-150.
- [10] Gray A.- Nearly Kaehler manifolds, J. Diff. Geom., 4, 1970, 283-309.
- [11] Haesen S.; Kowalczyk D.; Verstralelen L.- On the extrinsic principal directions of Riemannnian submanifolds, Note Math., 29, 2009, 41-53.
- [12] Hong S.;, Matsumoto K.; Triphati M. M. Certian basic inequalities for submanifolds of locally conformal kaehler space forms, Sut J. Math., 41(1), 2005, 75-94.

Vol. No.5, Issue No. 07, July 2017

www.ijates.com

1jates ISSN 2348 - 7550

- [13] Kashiwada T.- Some properties of locally conformal Kaehler manifolds, Hokkaido Math. J., 8, 1979, 191-
- [14] Kowalczyk D.- Casorati curvatures, Bull. Transilvania Univ. Brasov Ser. III, 50(1), 2008, 2009-2013.
- [15] Kim J. S; Song Y. M.; Tripathi M. M.- B. Y. Chen inequalities for submanifolds in generilized complex space forms, Bull. Korean Math. Soc., 40(3), 2003, 411-423.
- [16] Lee C.W.; Lee J.W.; Vilcu G. E.- Optimal inequalities for the normalized d-Casorati curvatures of submanifolds in Kenmotsu space forms, To Appear in Adv. in Geom.
- [17] Lee C. W.; Lee J. W.; Vilcu G. E.; Yoon D. W.- Optimal inequalities for the Casorati curvatures of the submanifolds of Generalized space form endowed with seni-symmetric metric connections, Bull. Korean Math. Soc. 52, 2015, 1631-1647.
- [18] Lee J. W.; Vilcu G. E.- Inequalities for generalized normalized d-Casorati curvatures of slant submanifolds in quaternion space forms, Taiwanese J. Math., 19, 2015, 691-702.
- [19] Lotta A., Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie, 39, 1996, 183-198.
- [20] Matsumoto K.; Mihai I.; Oiaga A.- Ricci curvature of submanifolds in complex space form, Rev. Roumaine Math. Pures Appl., 46, 2001, 775-782.
- [21] Matsumoto K.; Mihai I.; Tazawa Y.- Ricci tensor of slant submanifolds in complex space form, Kodai Math. J., 26, 2003, 85-94.
- [22] Tricerri F.; Vanhecke L. Curvature tensors on almost Hermitian manifolds, Trnas. Amer. Math. J., 26, 2003, 85-94.
- [23] Tripathi M. M. Inequalities for algebraic Casorati curvatures and their applications, arXiv:1607.05828v1 [math.DG] 20 Jul 2016.
- [24] Vanhecke L. Almost Hermitian manifolds with J-invariant Riemann curvature tensor, Rend. Sem. Mat. Univ. e Politee. Torino, 34, 1975-76, 487-498.
- [25] Verstralelen L. Geometry of submanifolds I, The first Casorati curvature indicatrices, Kragujevac J. Math., 37, 2013, 5-23.
- [26] Verstralelen L.- The geometry of eye and brain, Soochow J. Math., 30, 2004, 367-376.