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ABSTRACT

In this paper. we prove an optimal inequality for the normalized scalar curvature and the gener-
alized normalized §-Casorati curvatures for bi-slant submanifolds of cosymplectic space forms.
Moreover. we characterize those submanifolds for which the equality holds.
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I. INTRODUCTION

The Casorati curvature(extrinsic invariant) of a submanifold of a Riemannian manifold in-
troduced by Casorati defined as the normalized square length of the second fundamental form
[2]. The concept of Casorati curvature extends the concept of the principal direction of a hy-
persurface of a Riemannian manifold [[I1]. The geometrical meaning and the importance of the
Casorati curvature discussed by some distinguished geometers [7. [8] 14, 25| 26]. Therefore it
attracts the attention of geometers to obtain the optimal inequalities for the Casorati curvatures
of the submanifolds of different ambient spaces [17][18(23].

In this paper, we will study the inequalities for the generalized normalized §-Casorati cur-
vature for bi-slant submanifolds of cosymplectic space forms.

I1. PRELIMINARIES
Let M be a (2m+ 1)-dimensional almost contact metric manifold with structure (¢,&,1,g)
where ¢ is a tensor field of type (1, 1), & a vector field, i is a one form and g is the Riemannian
metric on M. Then they satisfy

o’=—1+n®& nE) =1 geX.¢Y)=g(X.¥)-n(X)n(y).
These conditions also imply that
¢0c=0. n(ex)=0. nX)=glX.c)
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and

g(oX.Y)+g(X,0Y) =0,

for all vector fields X .Y in TM. Where TM denotes the Lie algebra of vector fields on M.
An almost contact metric manifold M is said to be a cosymplectic manifold if

(Vx@)Y =0 and Vy& =0. (1)

where V denotes the Levi-Civita connection on M. The curvature tensor R for cosymplectic
space forms is defined as

RXY)Z = Z{s(¥.2)X —g(X,Z)Y +n(X)n(2)¥
—n¥Y)N(Z)X +n(Y)g(X.Z)E —n(X)g(Y,Z)E
—g(0X,Z)oY +g(9Y.Z)oX +2g(X,0Y )0 Z} (2)

forall X.Y.Z € TM.

Let M be a submanifold of an almost contact metric manifold M with induced metric g. We
write

OX =PX +FX

forany X € TM, PX and FX denote the tangential and normal parts of ¢ X respectively.
The equation of Gauss is given by

R(X.Y.Z.W)=R(X.Y,Z,W) +g(h(X ,Z).h(Y.W)) — g(h(X W), h(Y,Z)) (3)

for X,Y,Z,W € TM, where R and R represent the curvature tensor of M and M respectively.
The squared norm of P at p € M 18 defined as

n
2 2
IPI°= ). & (@eie)), 4)
ij=1
where {e1,...,e,,e,.1 =&} is any orthonormal basis of the tangent space TM of M.

A submanifold M is said to be a slant submanifold if for any p £ M and a non zero vector
X € T,M, the angle between JX and 7,M is constant, i.e., the angle does not depend on the
choice of p € M and X € T,M. The angle 6 < [0, 5] is called the slant angle.

In general, if a submanifold M admits two orthogonal distributions DP1 and D2, such that
(i) T4 =D% ¢ D
(ii) For any i = 1,2, D% is the slant distribution with slant angle 6,
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is known as Bi-slant submanifold. Naturally, the bi-slant submanifolds is a generalization

of semi-slant submanifolds and hemi-slant submanfolds. The invariant, anti-invariant, CR-
submanifolds, slant submanifolds appears as particular cases:
(i) If 8; = 6, = 0, bi-slant submanifolds is invariant submanifold.

(i) If 6 =6 = % bi-slant submanifolds is anti-invariant submanifold.
(iii) If 8 =0 and 6, = 3} bi-slant submanifolds is CR-submanifold.

(iv) If 8; = 0 and 6; # 0, bi-slant submanifolds is semi-slant submanifold.
(vilfe, = ifr and 6, # 3} bi-slant submanifolds is hemi-slant submanifold.

Suppose M be a bi-slant submanifold of a cosymplectic space form M . Let p € M and

{e1,...,en = £} an orthonormal basis of T,M, with

1
Pey,... e, 1,2 = C—P‘-’-Eﬂl—] 1€ 414 €20y +2 = E—P€2n1+1=

o056 o5t
1

co ey B4 2n2—1+€201+2n2 — o0 szm—?..nz—] 1€ +2m+1 — gr

€1,61 =
' cost

we have ,

|
g(per.er) = g(ﬁf’fl-.mﬂ’l) = ESU’EI Pey) = cosB.
Similarly, we have
g (per,er) = cos™6,

thus, we have

cos?@y, fori=1,...,2n —1

7
g (peiej) = (5)
T Y costly, fori=2ny+1,.... 201 +2np — 1

Let M be a Riemannian manifold and K (7r) denotes the sectional curvature of M of the plane
section m C T,M at a point p € M. If {ey....,e,} and {e,+1,....€2+1} be the orthonormal

basis of T,M and TPJ'M at any p € M, then the scalar curvature 7 at that point is given by
tp)= Y Kleire)
1<i< j<n

and the normalized scalar curvature p is defined as

2T

P

The mean curvature vector denoted by H is defined as

|
H:_ Z h(ei,f;‘)
ni=l
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and also we put

hl;=glh(eiej),ey), i,j€ 1,2, n, y€{n+1n+2,...2m+1}.

The squared norm of mean curvature of the submanifold is defined by

A

me-LY (};h ]

n y=n+1
and the squared norm of second fundamental form 4 is denoted by ¢ defined as

I+l n

Z):

]r’—n+1 ij=1

known as Casorati curvature of the submanifold.
If we suppose that L is an r-dimensional subspace of TM, r > 2, and {ej,e3,...,e,} 15 an
orthonormal basis of L. then the scalar curvature of the r-plane section L is given as

T(L) = E K(eyneg)
I=y<p=r

and the Casorati curvature ¢ of the subspace L is as follows

2m+1 m
1Yy
]f—ﬂ+] i,j=1

A point p € M is said to be an invariantly quasi-umbilical point if there exist 2m —n + 1
mutually orthogonal unit normal vectors &, 1.....&y,+1 such that the shape operators with
respect to all directions &y have an eigenvalue of multiplicity n — 1 and that for each &y the
distinguished eigen direction is the same. The submanifold is said to be an invariantly quasi-
umbilical submanifold if each of its points is an im.farizma’flj,r quasi-umbilical point.

The normalized &-Casorati curvature 6.(n— 1) and 3;(1': — 1) are defined as

[O:(n—1)], = %‘€P+ n 1: f{€(L)|L: a hyperplane of T,M } (6)
and
[5 (n—1)], =26+ —— 2n > Sup{%"[LHL a hyperplane of T,M}. (7)

n+l
In(n—1}

that the coefficient 5 ”+1 1 is not suitable and therefore modified by the coefficient % For a

positive real numbert # n(n— 1), the generalized normalized 6-Casorati curvatures 6.(t;n—1)

Some authors use the coefﬁment

instead of % in the equatin:m@). It was pointed out

and gc(r;n — 1) are given as
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B:(t:n—1)], =16, + ir{n —1)(n+1)(n* —n—t)inf{€(L)|L : a hyperplane of T,M},
I
if 0 <t <n®>—n, and
[gc(r;n —1)]p =ré, + %{n —1)(n+£)(n* —n—1t)sup{€(L)|L: a hyperplane of T,M},

if t >n*—n.

I11. MAIN THEOREM
Theorem 3.1. Let M be a n+ 1-dimensional bi-slant submanifold of a cosymplec space form
M of dimension 2n+ 1. Then
(i) The generalized normalized §-Casorati curvature 8.(t;n — 1) satisfies
o.(t:n—1 cln—1
p= n{{n— 1}}+Z(n+ 1)

c
— 35 [n1co.§231 1 nycos” 6]. (8)
for any real number t such that 0 <t < n(n—1).

(ii) The generalized normalized 8-Casorati curvature 8:(t:n— 1) satisfies

g;{r;n—]}_’_zl:n— 1)
nn—1) 4 n+1

+ 3%[?:100.5'291 +Hg£‘0.§'gﬂg]. (9)

for any real number t > n(n—1). Moreover , the equality holds in (8) and (%) iff M is an
invariantly quasi-umbilical submanifold with trivial normal connection in M, such that with
respect to suitable tangent orthonormal frame {ey.....e,} and normal orthonormal frame

{eni1,....€am-1}, the shape operator S, =S, , r € {n+ 1,...,m}, take the following form

(a00...0 0 )
0a0..0
00a...0

Sut1 = ... . . ) 1 Spp2=-"= m:ﬂ- (10)

00..a 0
-1
\ 000 .. 020, )

Proof. Let {ey,....e,} and {e,1,...,€2,.1} be the orthonormal basis of 7,M and TPJ-M re-
spectively at any point p € M. Putting X =W =, Y =Z = ¢, i # j from (2), we have

Rlev.ejejer) = Flslejesglene) —gleneglej.e} + 7 {nleln(e)slese)
—1(ej)nle;)glei.e;) +nlej)nle)gleie;) —nle)nle)gle; e;)
—g(9ei,ej)g(pej.ei) +g(Pej.ej)g(@ei i) +2g(ei, pej)g(Pej ei) (11)

From Gauss equation and (1)), we have
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1{glej.ej)gleiei) —gleiej)glej,ei)} +ginle)n(e;j)gle; e
—n(ej)nlej)glei.ei) +mn(ej)ne)gleie;) —n(ei)n(eigle;.e;)
—g(¢ei ej)g(dej ei) +g(Pej e;)g(Peiei) +2g(ei 0ej)g(Pej ei) }
=Rlej,ejeje;) —glhleie;), hleje;)) +glhleie;),hej e;)) (12)

By taking summation 1 < i, j < n, we have

m+1
2t=(n+1)?|H|* - (n+1)E + n{n—l—l +- { 2?1—0—323@?“6]} (13)
i.j=1
Using (3), we get
21:[n+1}2||H||2—(H+l)‘6’+§n(n—1)) (14)

m+]

+34 E g (Pl?; e}}}

i,j=1

Define the following function, denoted by 2, a quadratic polynomial in the components of the

second fundamental form

m—+1
D16 +al)E(L) -2t + = {n{n— }+32 Y &(geiej)}, (15)
i,j=1

where L is the hyperplane of T,M. Without loss of generality, we suppose that L is spanned by
er,... e, 1. it follows from (I3) that

n _I_r m n
2 Y Y (h

y=n+1ij=1

which can be easily written as

2= i H):][(nﬂ ﬂ)(h};j%rM(hL}z]

y=n+1i=1

+):{ (HH :—1) ): B =2 ): hﬁh}} f] (16)

n+1 (i< j)=1 [i<j)=

From(16). we can see that the critical points

1 +1 1
R = (R RS h R

of 2 are the solutions of the following system of homogenous equations:
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%@3:2(%+ (r})[ K —2Yi_ =0
a.2 X n—1,7
:_hm: 22 h =0
) m?_l n [:l Kk “?)
g2 _ n+r alt ¥y
a_..‘}-"_: ['n r{h]’ —U

. in

where i, j=1{1,2,....n—1}.i# j.andye {n+1,... .m}.
Hence, every solution h° has h}} = 0 for i # j and the corresponding determinant to the

first two equations of the above system is zero. Moreover, the Hessian matrix of £ is of the

following form

H O 0O
H(2) = 0O H, O
0O 0O H;
where
2(“%“‘”) 2 2 —2 )
alt)
-2 2 (”f —+ ”_1> -2 ... -2 -2
H) = ;
alt)
2t
-2 -2 -2 "

H»> and H; are the diagonal matrices and O is the null matrix of the respective dimensions. H»

and Hz are respectively given as
Hy = diag (4 PEL 4 @) y(ntt @) ) oy (ntt al) )
n n—1 n n—1 n P

dn+t) 4n+t) 4[n+r})_

. sy
n n n

and

Hs = d:'ag(

Hence, we find that #(2) has the following eigenvalues

A1 =0, lﬁ’:IZ(zr—i— a(t) ), 133:---:,1,"]!:2(”__”4_ a(r) )-.

n n—1 n n—1

n_

lfj:":l(n:r ﬂ{f)) lm: (H+r}1Vf,jE{1,2,.... } #}

Thus, 2 is parabolic and reaches at minimum 2(h<) = 0 for the solution A° of the system (17).

Hence 2 > 0 and hence
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m+1

E gz{'i’fffej]}!

i,j=1

[

4

whereby, we obtain

f o o e=l) e s
< *'67 (67‘[‘ = 3_ _B _B
p_n(n—l} +n(n—1) ( )+4 ! + z[nlcos | +nacos=6;)

for every tangent hyperplane L of M. If we take the infimum over all tangent hyperplanes L.
the result trivially follows. Moreover the equality sign holds iff

h}}:ﬂ, Vije{l.....n},i#jandye {n+1,....m} (18)

and

nln—1)

hY = r W == r_ R Yye{n+1,... m}. (19)

From (I8) and (19), we obtain that the equality holds if and only if the submanifold is invari-
antly quasi-umbilical with normal connections in M. such that the shape operator takes the form
([T0) with respect to the orthonormal tangent and orthonormal normal frames.

In the same way, we can prove (ii).

|

Corollary 3.2. Let M be an n+ 1-dimensional bi-slant submanifold of a cosymplectic space
form . Then

(i) The normalized &-Casorati curvature 8.(n — 1) satisfies

p<&n-1)+sll

e +3_—[n]co.5291 +H2£‘O.5’29‘2].

2

Moreover, the equality sign holds iff M is an invariantly quasi-umbilical submanifold with
trivial normal connection in M, such that with respect to suitable tangent orthonormal frame

le1,....ent1} and normal orthonormal frame {en+2. ... .€2m+1}, the shape operator S, = S.,,
re{n+1,....m}, take the following form

(a 00 ...0 0)
0a0..0
00a..0

Sny1= y Spr2 =" =8Su=0. (20)

000 a 0
\UOO...OZ&)

(ii) The normalized 6 -Casorati curvature 3(. (n— 1) satisfies

. —1)
5.(n—1)+<
pE f‘(n )+4H+1

- 3%[:‘:] cos 0 + ngcoszﬂg].
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Moreover, the equality sign holds iff M is an invariantly quasi-umbilical submanifold with

trivial normal connection in M, such that with respect to suitable tangent orthonormal frame

{e1,..., en+1} a and normal orthonormal frame {en+ 2. . . .. €2m-+1}, the shape operator Sy = S,,,
re{n+1,.... m}, take the following form
[2a 0 0 ... 0 0
0O 2a 0 ... 0 0O
0O 0 2a ... 0 0 _
Sn+1 = ) . ) . ) ) -S?J+2:"':Sm:U- (21)
O 0 0 ... 2a 0
\[] 0 0 ... 0 a
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