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ABSTRACT  

The concept of Menger space has been introduced recently as a generalization of metric space. The aim of this 

paper is to use the concept of occasionally weakly compatible mappings and semi-compatible mappings in 

Menger space and prove a common fixed point theorem. 
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1. INTRODUCTION  

In 1942, Menger [8] has introduced the theory of probabilistic metric space by introducing probabilistic notion 

into geometry.  The study of contraction mapping theorem was initiated by Sehgal [12] in 1966 in PM- space.     

Altun and Turkoglu [2] proved two common fixed point theorems on complete PM- space with an implicit 

relation. Schweizer and Sklar [11] played major role in development of fixed point theory in PM - space.  In 

1972, Sehgal and   Bharucha- Reid [13] initiated the study of contraction  mappings in the development of fixed 

point theorems. Singh et. al. [15]  introduced the concept  of weakly commuting mapping in PM- space.  Kumar 

and Chugh [7] established some common  fixed point  theorem using the idea of reciprocal continuous of 

mappings.  

Recently Al- Thagafi and Shahzad [1] weakened the notion of weakly compatible   maps by introducing 

owc maps. Bouhadjera and Godet-Thobie [3] introduced two new notions subsequential continuity and 

subcompability which are weaker than reciprocal continuity  and  compatibility  respectively. Using 

compatibility of type (A), Jain et. al. [4] proved an interesting result. 

2. PRELIMINARIES  

Definition 2.1.[9]  A mapping F : R R+ is called a  distribution if it is non-decreasing left continuous with  

 inf { F (t) | t  R } = 0    and    sup { F (t) | t   R} = 1. 

 We shall denote by L the set of all distribution functions while H will always denote the specific 

distribution function defined by  
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  0 , t 0
H(t) .

1 , t 0


 



 

Definition 2.2. [9] A mapping t :[0, 1] × [0, 1]  [0, 1] is called a t-norm if  it  satisfies the following conditions 

: 

(t-1)   t(a, 1) = a,       t(0, 0) = 0 ; 

(t-2)   t(a, b) =  t(b, a) ; 

(t-3)   t(c, d)   t(a, b) ;     for c  a, d  b, 

(t-4)   t(t(a, b), c) =  t(a, t(b, c))  for all a, b, c, d [0, 1]. 

Definition 2.3. [9] A probabilistic metric space (PM-space) is an ordered pair (X, F) consisting of a non-empty 

set X and a function F : X × X  L, where L is the collection of all distribution functions and the value of F at 

(u, v)  X × X is represented by  Fu, v. The function Fu,v assumed to satisfy the following conditions: 

(PM-1 ) Fu,v(x) = 1, for all x > 0, if and only if  u = v; 

(PM-2) Fu,v (0) = 0; 

(PM-3) Fu,v = Fv,u; 

(PM-4) If Fu,v (x) = 1 and Fv,w (y) = 1 then Fu,w (x + y) = 1, 

       for all u,v,w  X and x, y > 0.  

Definition 2.4. [9] A Menger space is a triplet (X, F, t) where (X, F) is a  PM-space and t is a t-norm such that 

the inequality 

(PM-5) Fu,w (x + y)  t {Fu, v (x), Fv, w(y) }, for all u, v, w X, x, y  0. 

Definition 2.5. [9] A sequence {xn} in a Menger space (X, F, t) is said to be convergent and converges to a 

point x in X if and only if for each  > 0 and  > 0, there is an integer M(, ) such that   

   Fxn, x () > 1 -   for all n  M(, ).   

 Further the sequence {xn} is said to be Cauchy sequence if for   > 0 and   > 0, there is an integer 

M(, ) such that  

   Fxn, xm
() > 1-   for all m, n  M(, ).  

 A Menger PM-space (X, F, t) is said to be complete if every Cauchy sequence in X converges to a 

point in X. 
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 A complete metric space can be treated as a complete Menger space in the following way : 

Proposition 2.1. [9] If (X, d) is a metric space then the metric d induces mappings F : X × X  L,  defined by 

Fp,q(x) = H(x - d(p, q)), p, q X, where  

  H(k) = 0,    for k  0   and   H(k) = 1,   for k >0. 

   Further if,  t : [0,1] × [0,1] [0,1] is defined by t(a,b) = min {a, b}.  Then (X, F, t) is a Menger 

space.  It is complete if (X, d) is complete. 

 The space (X, F, t) so obtained is called the  induced Menger space. 

Definition 2.6. [5] Self mappings A and S of a Menger space (X, F, t) are said to be weak compatible if they 

commute at their coincidence points i.e. Ax = Sx   for x X  implies  ASx = SAx. 

Definition 2.7. [9] Self mappings A and S of a Menger space (X, F, t) are said to be compatible if   

FASxn, SAxn
(x)  1 for all x > 0, whenever {xn} is a sequence in X such that Axn, Sxn  u for some u in X, as 

n . 

Definition 2.8. [10] Self maps S and T of a Menger space (X, F, t) are said to be semi-compatible if  

FSTxn, Tu (x)  1 for all x  > 0,  whenever {xn} is a sequence in X such that Sxn, Txn  u for some u in X, as n 

. 

Definition 2.9. [1] Self maps A and S of a Menger space (X, F, t) are said to be occasionally weakly 

compatible (owc) if and only if there is a point x in X which is coincidence point of A and S at which A 

and S commute. 

Definition 2.10. [6]  Two self maps  P and S of a Menger space (X, F, t) are said to be reciprocally  continuous 

if   PSxn→Pz  and   SPxn→ Sz ,  whenever {xn} is a sequence in X  such that   Pxn , Sxn  →z , for some z in X as  

n → ∞ .  

Lemma 2.1. [14]  Let  (X,F,*)  be a Menger space with continuous t- norm * , if there exists a  constant  h ∈ 

(0,1) such that  Fx,y (ht) ≥ Fx,y (t) , for  all x,y  ∈ X , and t > 0 then x = y .  

 

Example 1.1. Let M = [4, 40]  and d be usual metric on M. Define  mappings P, S :  

M→ M    by     

4, if v 4
Pv

5, if v 4


 



      and    
4, if v 4

Sv .
20, if v 4


 



       

It is noted that P and S are reciprocally continuous mappings but they are not continuous.  
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Lemma 2.2. [14] Let {xn} be a sequence in a Menger space (X,F, t), where t is continuous and  satisfies  t(x,y) ≥ 

x, for all  x ∈ [0,1] . If there exists a constant   k ∈ (0,1)  such that   

       F
un,un+1

  ( kx) ≥ F
un-1,un

  (x) , n = 1, 2, 3, …       then {xn} is 

a Cauchy sequence in X.  

3. MAIN RESULT  

Theorem 3.1. Let P, Q, S and T be self mappings on a complete  Menger space  

(X, F, t) with   continuous   t-norm   t (c, c) ≥ c , for some c ∈ [0,1]  satisfying : 

     (3.1)  P(X) ⊆ T(X) , Q(X)  ⊆ S(X) ,  

     (3.2) (Q, T ) is occasionally weak compatible,  

     (3.3) For all x,y ∈ X , and h > 1 ,  

              FPx,Qy (hx) ≥  Min[FSx,Ty (x), {FSx,Px(x). FQy,Ty(x)}, FPx,Sx(x)]  

If (P, S) is semi compatible pairs of reciprocal continuous maps then P, Q, S  and T  have a  unique common 

fixed point.  

Proof: Let  x  X , be any  arbitrary point. Then we can construct two sequences {xn } and {yn} in  X such that    

y2n = Px2n+1 = Tx2n ,    and      y2n+1 = Qx2n+2= Sx2n+1  , for n =  0,1,2,… 

First, we will  prove that {yn}  is a Cauchy sequence in X.    

Now, by inequality (3.3), we have   

F
y2n+1,y2n+2

(hx)  ≥ Min[FSx
2n+1

,Tx
2n+2

 (x), {FSx
2n+1

, Px
2n+1

(x). FQx
2n+2

,Tx
2n+2

(x)}, FPx
2n+1

,Sx
2n+1

(x)]  

                                  ≥ Min[Fy
2n+1

,y
2n+2

 (x) , { Fy
2n+1

,y
2n

(x) .Fy
2n+1

,y
2n+2

 (x) }, Fy
2n+1

, y
2n+2

 (x) ]  

     F
y2n+1,y2n+2

 (hx)   ≥  Fy
2n

,y
2n+1

(x).        

Similarly , we get   

             Fy
2n+2

, y
2n+3

(hx)  ≥ Fy
2n+1

,y
2n+2

(x).     

    In general, we have    

               Fy
n+1

, y
n
(hx)    ≥  Fy

n
,y

n-1 
(x). 

Then by Lemma 2.2 , {yn} is a Cauchy sequence and it  converges  to some point  z in X.  

 Hence the subsequences convergent  as follows  :  
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    {Px2n} → z , {Sx2n} → z , {Qx2n+1} →z  and    {Tx2n+1} → z.   

Now, since P and S are reciprocal continuous and semi- compatible then we have  limn→∞ PSx2n =   Pz ,    

limn→∞ SPx2n = Sz , and  limn→∞ M( PSx2n, Sz,t) = 1 .   Therefore we get Pz = Sz .  

Now we will show that  Pz = z .     

By inequality (3.3) , putting  x = z , y = x2n+1 ,  we get   

              FPz,Qx
2n+1

(hx) ≥  Min[FSz,Tx
2n+1

(x), {FSz,Pz(x). FQx
2n+1

,Tx
2n+1

(x)}, FPz,Sz(x)].  

Taking  limit n→∞ , we get  

FPz,z (hx ) ≥   Min [Fsz,z(x), {FSz,Pz (x) . Fz,z(x) }, FPz,Sz(x)] 

Since  Pz =Sz , then we get  

FPz,z (hx)  ≥ Min [ FPz,z (x) , { FPz,Pz (x) . Fz,z (x) }, FPz,Pz  (x) ]  

FPz,z(hx)   ≥ FPz,z(x),    

then by Lemma 2.1, then we get  z = Pz.  

Since,  Pz = Sz ,  combining  both we get       z = Pz = Sz.  

Now ,  P(X)  ⊆ T(X) ,  therefore there exists a point   u ∈  X  such that    z = Pz = Tu.  

Putting  x= x2n , y = u in inequality (3.3) , we get   

              FPx
2n

,Qu (hx) ≥  Min[FSx
2n

,Tu (x), {FSx
2n

,Px
2n

(x). FQu,Tu(x)}, FPx
2n

,Sx
2n

(x)]  

Letting  n→∞ , we get  

Fz, Qu (hx)  ≥ Min [ Fz, Tu (x) , { Fz,z(x) . FQu,z (x)}, Fz,z (x) ]  

FZ,Qu  (hx)  ≥   Fz,Tu (x)  

Then, by Lemma 2.1, we get         Qu =  Tu .  

Since  z = Pz = Tu  and  we proved that  Qu =  Tu , combining both we get     

 z = Qu = Tu.  

Occasionally weak compatibility of  (Q, T) gives   TQu = QTu   i.e. Qz = Tz .  

Now , we will prove that  Qz = Pz .  

Again  assuming  Qz ≠  Pz . 

By inequality (3.3),   putting  x = z , y = z , we get   
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FPz,Qz (hx)  ≥ Min [ FSz,Tz (x) , { FSz,Pz (x) . FQz,Tz (x) } , FPz,Sz (x) ]  

FPz,Qz (hx)  ≥ Min [ FPz,Qz  (x) , { FPz,Pz (x) . FQz,Qz (x) } , FPz,Pz (x) ]  

FPz,Qz (hx)  ≥   FPz,Qz  (x),  

which is a contradiction , thus  we get Pz = Qz.    

Since Pz = Sz = z , and  Qz = Tz. 

Hence finally  we get      

   z = Pz = Qz = Sz = Tz.   i.e.  z is a common fixed point of  P, Q, S and T.  

Uniqueness:  Let w be another common fixed point  of  P, Q, S  and T, then   w = Pw = Qw = Sw = 

Tw .  

Putting  x = z and y = w , in inequality (3.3) , we get   

FPz, Qw (hx)  ≥ Min [ FSz,Tw  (x), {FSz,Pz (x) . FQw,Tw (x)} , FPz,Sz (x) ]  

  Fz,w (hx)    ≥ Min [ Fz,w (x) , { Fz,z (x) . F w,w (x) } , Fz,z (x) ]  

  Fz,w (hx)    ≥  F z,w (x)   

Hence , from Lemma 2.1 , we get  z = w .  

Therefore  z is a unique common fixed point of P,Q,S  and T .  

By setting  P = Q  in theorem 3.1, we have the following corollary - 

 

Corollary 3.2.   Let P, S and T be self maps of a complete  Menger space (X,F,t) , where  t is continuous t-

norm,   satisfying  following  conditions :  

1. The pair  (P,T )  is occasionally weak  compatible,  

2. For all x,y ∈ X  and h > 1,  

       FPx,Py (hx)    ≥ Min [ FSx,Ty(x), { FSx,Px (x) . FPy,Ty (x) }, FPx,Sx (x) ] 

If  (P, S) is semi compatible pairs of reciprocally continuous maps  Then , P,S and T have a unique common 

fixed point  in X.  

On taking  P = Q  and S = T , we get another corollary  - 

Corollary 3.3.    Let P and S  be self maps of a complete  Menger space (X, F, t) , where  t is  continuous  t-

norm,   satisfying  following  conditions :  
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   1.  For all x,y ∈ X  and h > 1,  

        FPx,Py (hx)    ≥ Min [ FSx,Sy (x) , { FSx,Px (x) . FPy,Sy (x) }, FPx,Sx (x) ]   

     If  (P,S) is semi compatible pairs of reciprocally continuous maps  and occasionally weak compatible. Then, 

P and S have a unique  common fixed point  in X. 
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