

19 | P a g e

VHDL implementation of UART Module using FSM

Gaurav Verma
1
, Vishal Rajput

2
, Jashandeep Singh

3

1,2,3
 Students, M.Tech VLSI Designing, ACSD, CDAC Mohali

ABSTRACT

With the technology advanced and the rising of SOC (System on Chip) concept resulting in designing of various

modules in efficient manner to be embedded in smaller area, consuming less power and improvement in overall

integration. UART which is an abbreviation for Universal Asynchronous Receiver Transmitter is a

communication protocol majorly finds application in Microcontrollers and other standard data transfer

interfaces. UART can be easily implemented by VHDL or Verilog can be demonstrated on a FPGA board for

data transmission. This paper presents the basic implementation of UART module using FPGA and its

implementation on Spartan 6.

Keywords : Asynchronous, Microcontroller, FPGA

I.INTRODUCTION :

UART stands for Universal Asynchronous Receiver/Transmitter. UART is a circuit that controls the computer

interface so that the computer can exchange data with device. UART is a simple Half-duplex, Asynchronous,

Serial communication Protocol between two equivalent nodes generally between a processor and a peripheral.

The key functionality of UART involves the fact that receiver itself creates the clock by checking the baud rate

of the first bit of the frame. Serial transmission of digital information through a single wire or other medium is

less costly than parallel transmission through parallel wires. It is used for short distance, low cost data

transmission at the cost of low speed. The UART takes bytes of data and transmits individual bits in a sequential

fashion. The fundamental concept employed in UART is parallel to Serial data conversion at transmitter and

serial to parallel conversion at receiver end. Any node can initiate communication. Its parameter speed is

configurable which makes it universal. Each UART contains a shift register which is the fundamental method of

conversion between serial and parallel forms.

WORKING OF UART MODULE :

(a) TRANSMITTER

1. UART transmitter receives data in parallel form from the data bus as shown in Figure 1 below.

20 | P a g e

Figure 1

2. The transmitting UART adds the start bit, parity bit, and the stop bit(s) to the data received from the data bus

(Figure 2).

Figure 2

3. The transmitting UART sent the entire frame serially to the receiving UART. The receiving UART samples

the data line at the pre-configured baud rate (Figure 3).

21 | P a g e

 Data frame

Figure 3

4- The receiving UART discards the start bit, parity bit, and stop bit from the data frame (Figure 4).

Figure 4

5. The receiving UART converts the serial data back into parallel and transfers it to the data bus on

the receiving end (Figure 5).

22 | P a g e

 Figure 5

The UART transmitter section includes

 1. A transmitter hold register (THR)

 2. A transmitter shift register (TSR).

When the UART is in the FIFO mode, THR is a 16-byte FIFO. Transmitter section control is a function of the

UART line control register (LCR). Based on the settings chosen in the LCR, the UART transmitter sends the

following to the receiving device:

1 START bit

5, 6, 7, or 8 data bits (as required)

1 PARITY bit (optional)

1 STOP bit

Software outputs a byte of data to the THR. The bits are immediately copied into an internal „shift‟-register. The

bits are shifted out, one-at-a-time, in sync with a clock-pulse.

(b) RECEIVER

 1- The receiving UART discards the start bit, parity bit, and stop bit from the data frame as shown in

Figure 6 below.

23 | P a g e

Figure 6

2. The receiving UART converts the serial data back into parallel and transfers it to the data bus on the receiving

end (Figure 7).

Figure 7

The UART receiver section includes

 1. A receiver shift register (RSR)

 2. A receiver buffer register (RBR).

Receiver section control is a function of the UART line control register (LCR). The UART receiver accepts

following from transmitting device:

The receiving UART discards the start bit, parity bit, and stop bit from the data frame

• 1 START bit

• 5, 6, 7, or 8 data bits

24 | P a g e

• 1 PARITY bit (optional)

• 1 STOP bit

FINITE STATE MACHINE REPRESENTATION

It becomes quite easier for studying and implementation of a module with the use of FSMs. FSMs are symbolic

representation of a module with different states and their controlling signals for transitions.

TRANSMITTER STATE DIAGRAM

Figure 8

Figure 8 above shows the Finite State Machine representation of the transmitter section of UART Module

designed. Basically it has four states. Idle state is when the transmitter Reset is active and no action is being

performed. Then Load_Tx state allows the loading of data bits in register and addition of start and stop bits for

completion of frame. Then as UART is ready to transmit, Shift_Tx state is in operation where serial

transmission of bits takes place. Finally when all the bits in the frame are sent, the fourth state Stop_Tx is in

action where all the registers are cleared and Transmitter is sent back to idle state for next set of data

transmission.

Transmitter VHDL Code

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity uarttx1mar is

port

(

clk : in std_logic;

reset: in std_logic;

load : in std_logic;

frame: out std_logic_vector(5 downto 0);

Din : in std_logic_vector (3 downto 0));

25 | P a g e

end uarttx1mar;

architecture Behavioral of uarttx1mar is

signal tx_regdata : std_logic_vector(3 downto 0);

signal tx_reg : std_logic_vector(5 downto 0);

 begin

process (reset, clk, tx_state)

begin

if (reset= '1') then

 tx_regdata <= "1111";

 tx_reg <= "111111";

 tx_state <= tx_idle;

elsif rising_edge (clk) then

case tx_state is

 when tx_idle =>

 if load= '1' then

 tx_regdata <= Din;

 tx_state <= tx_load;

else tx_state <= tx_idle;

 end if;

 when tx_load =>

 tx_state <= tx_shift;

 tx_reg <= '1' & tx_regdata & '0'; // framing

 when tx_shift =>

tx_reg <= '1' & tx_reg(tx_reg'high downto 1);

 tx_state <= tx_stop;

26 | P a g e

 when tx_stop =>

 tx_state <= tx_idle;

 end case;

end if;

frame <= tx_reg;

end process;

end Behavioral;

 RECEIVER STATE DIAGRAM

 Figure 9

27 | P a g e

As in the case of transmitter section, the corresponding receiver section is also designed using four states as

shown in figure 9. Here starting from Idle_Tx state where the receiver registers are all cleared. when the

receiver starts receiving the bits of frame and first start bit is received, Receiver moves to the Start_Rx start

where the start bit is sampled according to baud rate and required no of cycles to receive one bit is determined.

The registers are now ready for data reception and receiver is moved to Shift_Rx state where the bits are

simultaneously received and shifted in corresponding register. Finally at the completion of all bits of data frame

and stop bit the receiver is set to Stop_Rx state and here all the data is moved to output and receiver is finally set

to idle_rx state and makes the registers again clear for next set of reception.

Receiver VHDL Code

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity uartrx1mar is

port

(

 clk :in std_logic;

reset:in std_logic;

ready : in std_logic;

rx_reg:inout std_logic_vector(5 downto 0);

Dout : out std_logic_vector (3 downto 0));

end uartrx1mar;

architecture Behavioral of uartrx1mar is

type rx_states is (rx_idle, rx_stop, rx_shift, rx_start);

signal rx_state : rx_states;

begin

process (reset,clk,rx_state)

begin

28 | P a g e

if (reset='1') then

rx_reg <= (others =>'0');

Dout <= (others =>'0');

framerx <= (others =>'0');

rx_state <= rx_idle;

elsif rising_edge(clk) then

 case rx_state is

 when rx_idle =>

 if (ready='1') then

 framerx <= rx_reg;

 rx_state <= rx_start;

else rx_state <= rx_idle;

 end if;

when rx_start =>

 if (framerx(5)='1') then

 rx_state <= rx_shift;

 end if;

 when rx_shift =>

 framerx <= '1' & framerx(framerx'high downto 1);

 rx_state <= rx_stop;

 when rx_stop =>

 Dout<=framerx;

 rx_state<= rx_idle;

end case;

end if;

29 | P a g e

end if;

end process;

end Behavioral;

Output Waveforms :

The following figures from 10 to 26 show the transmission and reception of data bits through frame designed

with start and stop bits serially. These were obtained at simulation of VHDL Code separately by combining the

transmitter and receiver modules discussed above with a baud rate generator.

Figure 10

Figure 11

30 | P a g e

Figure 12

Figure 13

Figure 14

31 | P a g e

Figure 15

Figure 16

Figure 17

32 | P a g e

Figure 18

Figure 19

Figure 20

33 | P a g e

Figure 21

Figure 22

Figure 23

34 | P a g e

Figure 24

Figure 25

Figure 26

35 | P a g e

II.DISCUSSION:

UART module is implemented using VHDL and verified on FPGA SPARTON 6 kit. 8 bits of data were sent

and received successfully. Further detailed investigation can be done to verify the number of clock cycles

needed for receiving each bit. Sampling rates and baud rates can be varied for further variety of rates. Further

work can be in betterment including more number of states for improved data transmission.

REFERENCES

[1] FPGA implementation of Advanced UART Controller using VHDL, Arpita Tiwari, Ravi Mohran,

Divyanshu Rao, IMPACT : IJRET, Vol.2, Issue 8, August 2014, Pg 23-32

[2] VHDL Implementation of Universal Asynchronous Receiver Transmitter with Linear Feedback Shift

Register, Simarjeet Singh, Amardeep Kaur, IJARCSSE, Volume 7, Issue 5, May 2017

[3] Designing of UART using VHDL, Renuka Hingmire, Tamanna Jethwa, Aishwarya Askar, Sagar Mahajan,

Prashant Shende, ISSN, Volume-3, Issue-3, 2016

[4] A VHDL Implementation of UART Design with BIST Capability, Mohd Yamani Idris, Mushkuri Yaacob,

Zaidi Razak, University of Malaya, Malaysia, Malaysian Journal of Computer Science, Vol. 19 (1), 2006

[5] Fang Yi-yuan, Chen Xue-jun. "Design and Simulation of UART Serial Communication Module Based on

VHDL," Intelligent Systems and Applications (ISA), 2011 3rd International Workshop vol., no., pp.1-4, 28-29

May 2011.

[6] Naresh Patel, Vatsalkumar Patel and Vikaskumar Patel. “VHDL Implementation of UART with Status

Register” 2012 International Conference on Communication Systems and Network Technologies (IEEE).

[7] Hazim Kamal Ansari, Asad Suhail Farooqi. “Design Of High Speed Uart For Programming FPGA”

International Journal Of Engineering And Computer Science Volume1 Issue 1 Oct 2012

[8] Ananya Chakraborty, Surbhi, Sukanya Gupta, Swati Deshkar, Pradeep Kumar Jaisal. “Design of UART

(Universal Asynchronous Receiver Transmitter) using VHDL”, IJCST Vol. 3, Issue 1, Jan. - March 2012

