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ABSTRACT:  

This paper propose a new predictive model based on Gaussian process regression (GPR) algorithm with matern 

5/2 and matern 3/2 kernel for estimating the yield of a methanol steam reformer. The input parameters consist 

of reforming temperature and feed rate while the target output includes methanol conversion, hydrogen 

production and carbon-monoxide generation. The high value of coefficient of determination (R
2
=1) acquired 

indicates that the predicted rate of target output is strongly correlated with the observed value. The Least root 

mean square (RMSE) for methanol conversion and hydrogen generation is obtainedbymatern 3/2 kernel and 

carbon-monoxide generation by matern 5/2kernel. Response surface optimization (RSO) optimizes the input 

parameter by maximizing the methanol conversion and minimizing the carbon-monoxide. The inlet feed flow 

rate of 29.3939cm
3
/hr. and reformer temperature of 239.798˚C is been observed with the application of 

multiobjective optimization.  

Keywords:Response surface optimization (RSO), Gaussian process regression (GPR), methanol steam 

reformer, matern 3/2 kernel and matern 5/2 kernel 

 

1. INTRODUCTION 

The improvement within the performance of the many portable electronic devices in terms of miniaturization 

has become significant during the last decade. Therefore, nowadays researchers are focusing on the event of 

portable power sources capable of delivering power in 0.1–100Wrange for potential usage in combat situations 

also as small electronic devices. Recent growth toward the event of fuel cells proposes an alternate power source 

thanks to their high-energy efficiency and eco-friendly nature. [1]Fuel cells need endless supply of hydrogen gas 

for his or her operation and hydrogen is named as a fuel of future. Hydrogen based proton exchange membrane 

fuel cells (PEMFCs) have the potential of providing energy storage densities several times above those 

achievable using current state-of-the-art lithium-ion batteries. [2]Hydrogen (H2) has become one among the 
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foremost interesting clean energy carriers for the near future due to the depletion of non-renewable fossil fuels, 

the expansion in heating, and therefore the rise in serious pollution problems. H2 are often produced from 

sustainable liquid fuels or alcohols like methanol. Methanol, which is quickly available and may be produced 

from renewable sources, is taken into account as the optimal potential H2 source for 2 main reasons. Firstly, 

methanol is often catalytically converted to a H2-rich stream at a comparatively coldness range (200 °C to 400 

°C) with no requirement for desulfurization or pre-reforming processes. Secondly, there's no C–C bond within 

the methanol structure (unlike within the easier to supply ethanol), which minimizes the danger of coke 

formation. There are four main reactions to supply H2 from methanol, being the decomposition (DM), steam 

reforming (SRM), partial oxidation (POM) and auto thermal reforming (ARM) of methanol. Comparing the 

stoichiometric H2 production among these reactions, the SRM method yields more H2 with no carbon monoxide 

gas (CO) content, as shown in Eq. [1,2,3]. [3] 

Steam Reforming:  

CH3OH (g) + H2O (g) ↔ 3H2 (g) + CO2 (g) ∆H = +49.5 KJ/mol……………... (1) 

Decomposition: 

CH3OH(g) ↔ 2H2(g) + CO(g)   ∆H = +49.5 KJ/mol……………... (2) 

Water-gas shift: 

CO (g) + H2O (g) ↔ H2 (g) + CO2 (g)                                        ∆H = +49.5 KJ/mol……………... (3) 

Researcher has however begun to investigate the utilization of machine learning algorithms in methane steam 

reforming. Bamidele Victor Ayodeleet al [4] utilised artificial neural network to model the hydrogen production 

rate from methane dry reforming with the utilisation of the presence of Co/Pr2O3as the catalyst. The study 

investigates the speed of CO and H2 production and observed good result in all cases (R
2 

> 0.999). 

Computational intelligence are slow in generating results due to theiterative tuning of the models user-defined 

parameters and the steepest-gradient training algorithmsutilized. To beat these issues, a non-parametric 

approach to regression known as Gaussian processregression (GPR) avoids over fitting by defining a function 

distribution and setting a previous distributionof unlimited possibilities over the function directly. GPR is 

additionally known to generalize wellthanks to its preference to a smooth function that accurately explains the 

training data without manualparameter tuning as has been the case of ANN. After applying GPR the info is 

employed for performingmulti objective optimize to maximize Methanol Conversation, 

minimization of Carbon Monoxide for the Methanol Steam Reformer by using Response 

Surface Optimization. 

 

2. MODELLING METHODOLOGY 

2.1 Gaussian processregression (GPR) 

A Gaussian process (GP) is an infinite group of random variables of which any of the finite subsets features a 

continuing joint Gaussian distribution. A GP is represented by a mean function and a covariance function. Since 

the GP could also be a linear combination of random variables is having a standard distribution, by simplicity, 

the mean function is usually assumed to be zero. Assuming a training set y of n number of parameters and 
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having an input matrix X ∈R
n
 and output variable Y ∈R, which is expressed to be a methanol conversion or 

hydrogen generation. The Gaussian process is therefore represented in Equation (1) as: 

Y ~ GP (m(x), k (x, x′))        (1) 

Where GP is Gaussian process, m(x) is that the mean function and k (x, x′) is that the covariance function. The 

m(x) within the GP represents the arithmetic mean of the function y at the input matrix point x as expressed in 

Equation (2):  

m (x) = E [f(x)]      (2) 

The k (x, x′) is the confidence level for m(x) as represented in Equation (3). TheCovariance function takes any 

two arguments such it generates a non-negative covariance matrix K.  

K (x, x′) = E [(f(x) – m(x)) (f (x′) – m (x′))]                    (3) 

There are various covariance functions (kernel functions) that can be employed in a GPR as denoted in 

Equations: 

(1) Matern 3/2: 

K (x, x′) =𝝈2
f (1+  𝟑𝒓 ) exp [- 𝟑𝒓 ]   (6) 

(2) Matern 5/2: 

K (x, x′) =𝝈2
f (1+  𝟓𝒓 +

 𝟓𝒓

𝟑
) exp [- 𝟓𝒓 ]   (7) 

The predicted Vs Actual response plot is employed to see model performance after training a model. Use this 

plot to know how well the regression model makes predictions for various response values. The anticipated 

response of our model is plotted against the particular, true response. An ideal regression model features a 

predicted response adequate to truth response, so all the points lay on a diagonal line. The vertical distance from 

the road to any point is that the error of the prediction for that time. A True model has small errors, then the 

predictions are scattered near the road. Usually an honest model has points scattered roughly symmetrically 

round the diagonal line. If we will see any clear patterns within the plot, it's likely that we will improve the 

model. The predicted Vs Actual response plot of matern 5/2 GPR, matern 3/2 for methanol conversion, 

hydrogen generation, and carbon monoxide gas formation respectively are shown in figure 1, 2, 3. 

 

(a) matern 5/2 kernel    (b) matern 3/2 kernel  
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Fig 1. Predicted vs. Actual plot for methanol conversion by Gaussian Progression Regression 

 

 (a) matern 5/2 kernel    (b) matern 3/2 kernel  

Fig 2. Predicted vs. Actual plot for hydrogen generation by Gaussian Progression Regression 

 

 (a) matern 5/2 kernel    (b) matern 3/2 kernel  

Fig 3. Predicted vs. Actual plot for carbon monoxide formation by Gaussian Progression 

Regression 

The concept of Gaussian processes is understood as after Carl Friedrich Gauss because it’ssupported the notion 

of the traditional Gaussian distribution to be an infinite-dimensional generalization of multivariate normal 

distributions. Every linear combination is evenly distributed; Gaussian process is used in statistical modeling, 

regression to multiple target values and analyzing mapping in higher dimensions. For each GPR model we’ll be 

(1) Training a knowledge set with GPR models such as Matern 5/2 GPR and Matern 3/2 GPR (2) Plotting the 

behavior of each algorithm deciding the RMSE, R-Squared Value, MSE, Prediction Speed, Training Time, and 

(3) Analyzing the results of each Gaussian process regression to determine the similarities and differences of the 
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data. The aim of these trials is to determine if we’ll find some interesting behaviors, so we’ll find different 

method to optimize GPR models. Shown below are the varied behaviors of each GPR. Furthermore, the 

anticipated data is that the used for response surface optimization (RSO) for optimizing input parameters which 

are input feed flow rate and reforming temperature. 

2.2 Response Surface Optimization 

The Response Surface Methodology for Design of Experiments (DOE) is employed to hold out Response 

Surface Optimization. The Reforming Temperature and Inlet Feed flow is taken into account as input response 

predictors to maximise Hydrogen Formation and Methanol Conversion and carbon monoxide gas is minimized. 

The following phase is to analyses and interpret the results so valid and sound conclusions are often derived. 

The Pareto Plot is to be used for the analysis of experimental results. The Pareto plot allows one to detect the 

factor and interaction effects that are most significant to the processor design optimization study one should 

house. It displays absolutely the values of the results and draws a reference line on the chart.  A Pareto plot is 

made for the Dataset is shown in Figure 4, 5, 6. Minitab displays absolutely the value of the standardized effects 

of things when there's a blunder term. There’s a main effect when different levels of an element affect the 

response differently. A main effects plot graphs (figure 7, 8, 9) the response mean for every factor level 

connected by a line. 

2.2.1 Pareto Plot of Factor Effects 

The Pareto plot allows one to detect the factor and interaction effects that are most significant 

to the processor design optimization study one needs to accommodate. It displays absolutely 

the values of the results and draws a reference line on the chart. The values crosses the 

reference line are equally important. For instance, for the methanol steam reformer, a Pareto 

plot is made in Figure 4, 5, 6. 

 

Figure 4: Pareto Effect Methanol Conversion 
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From Figure 4 it can be observed that the most impacting factor for methanol conversion are feed rate and 

reforming temperature as both the factors crosses the reference line as shown in figure 1, Thus both the input 

factors play a vital role in methanol conversion. 

 

Figure 5: Pareto Effect of Hydrogen Formation 

From Figure 5 it can be observed that the most impacting factor for Hydrogen generation are feed rate and 

reforming temperature as both the factors crosses the reference line as shown in Figure 5, so both the input 

factors play a vital role in Hydrogen generation . 

 

Figure 6: Pareto Effect Carbon Monoxide 

From Figure 6 it can be observed that the most impacting factor for Carbon Monoxide is Reforming 

temperature as compared to the Feed rate. 
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2.2.2 Main Effect Plot 

The Main Effects plot could be a plot of the mean reaction esteems at each degree of a plan boundary or 

procedure variable main. One can use this plot to match the relative strength of the results of varied factors. The 

sign and magnitude of the most impact would tell us the following: 

 The sign of the most impact tells us of the direction of the effect, that is, whether the common response 

value increases or decreases. 

 The strength of the effect depends on magnitude. 

If the effect of a design or process parameter is positive, it implies that the typical response is higher at a 

high level instead of a coffee level of the parameter setting. In contrast, if the effect is negative, it implies 

that the common response at the low-level setting of the parameter is quite at the high level. 

The effect of a processor design parameter (or factor) are often mathematically calculated using the 

subsequent simple equation 

𝐄𝐟 =  𝐟 (+𝟏) + 𝐟 (−𝟏)                                       (8) 

Where F̄ (+1) = average response at the high-level setting of a factor, and   F̄ (-1) = average response at the 

low-level setting of a factor. 

 
 

Figure 7: Main Effect Plot Methanol Conversion  

From Figure 7, it is observed that methanol conversion decreases with increase in feed rate, but as the reforming 

temperature increases the methanol conversion also increases, it can also be inferred that for generating high 

methanol conversion it needs high reforming temperature and less feed rate. 
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Figure 8: Main Effect Plot Hydrogen Formation 

From Figure 8, it is observed that with increasing feed rate and reforming temperature hydrogen generation also 

increases. To obtain maximum hydrogen generation both feed flow rate and reforming temperature should be 

maximum. 

 

Figure 9: Main Effect Plot Carbon Monoxide Generation 

From Figure 9, it is observed that feed flow rate has low effect and Reforming temperature has high effect on 

carbon monoxide generation. Thus in order to get minimum carbon monoxide reforming temperature needs to 

be optimized as it plays a major impacting role in increasing carbon oxide therefore it needs to be optimized. 

3. Results and discussion 

3.1 Gaussian Progression Regression  
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Table:  Result table for Gaussian Progression Regression for matern 5/2 and matern 3/2 kernel 

Factors  
Methanol Conversion Hydrogen Formation 

Carbon Monoxide 

Generation 

Matern 5/2 Matern 3/2 Matern 5/2 Matern 3/2 Matern 5/2 Matern 3/2 

RSME 0.6877 0.54889 0.0038477 0.0035743 0.0010406 0.0013772 

R-Squared 1 1 1 1 1 1 

MSE  0.47293 0.30128 0.000014805 0.000012776 1.0828E-06 1.8966E-06 

MAE  0.51624 0.41281 0.0025498 0.0022276 0.00075245 0.00073563 

Train Time (sec) 1.2255 1.0544 1.0744 1.0986 1.3079 1.1959 

The model parameter is used to gauge the performance of various models. After training the Gaussian process 

regression (GPR), the performance of each feature is compared as shown in Table. The performance of various 

GPR based models are compared using the subsequent model statistics.RMSE (Root mean square error) is 

usually positive and its units match the units of the response. Search for smaller value of the RMSE, R-Squared 

coefficient of determination is usually smaller than or adequate to 1 but always greater than 0. If the model is 

worse than this constant model, then R-Squared is negative. Search for an R-Squared on the brinkof 1 MSE 

(Mean squared error). The MSE is that the square of the RMSE, MAE (Mean absolute error) is usually positive 

and almost like the RMSE, but less sensitive to outliers, Search for smaller value of the MAE. 

3.2 Response Surface Optimization  

3.2.1 The overlaid contour plot 

Overlaid Contour Plot is employed to visually identify the feasible variables for multiple responses for a model. 

Feasible variable settings for one response might be far away from feasible for a special response. Overlaid 

contour plots uses to contemplate the reactions at the identical time. 

To create an overlaid contour plot, we specified a lower and bound for each response. The various variables in a 

very model are held at user-specified settings. 

The isometric may be a curve that connects plot points, like the fitted response values, which are equal. This can 

be referred to as the feasible region. Figure Number shows the Overlaid Contour plot showing feasible area for 

Optimization of Inlet Feed Rate and Reformer Temperature with maximized Methanol Conversion, Hydrogen 

Formation, and minimized monoxide generation. The overlaid contour plot is as shown in Figure 10. 
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Figure 10:  Contour Plot for Feasible Region 

3.2.2 Response optimizer 

Response Optimizer is utilized to detect the blend of info variable settings that improve one reaction or an 

assortment of reactions. Minitab computes an ideal arrangement and draws an advancement plot. This intelligent 

plot permits you to adjust the info variable settings to perform affectability examinations and perhaps enhance 

the underlying arrangement. The Response Optimizer is used to predict the exact values for Inlet Feed rate and 

Reformer Temperature, which are 29.3939 cm3/hr and 239.78°C. The graph of optimized values is shown in 

figure 11. 

 

Figure 11:  Optimized Response Curves 
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4. CONCLUSION  

From the above study, the Gaussian Progression Regression is implemented with matern 5/2 and matern 3/2 as 

kernel on compact methanol steam reformer for prediction of methanol conversion, hydrogen generation, and 

carbon monoxide formation. The low RMSE values 0.54889 and 0.0035743 are obtained for methanol 

conversion and hydrogen formation for matern 3/2 kernel, whereas 0.0038477 for carbon monoxide generation 

for matern 5/2 kernel. The Response Surface Optimization was tested on Methanol Steam Reformer. The 

optimized inlet feed flow rate of 29.3939cm
3
/hr. and reformer temperature of 239.798˚C is been observed for 

predicted data.  
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