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Abstract 

The aim of this paper is to analyze thermal stresses in an inhomogeneous transversely isotropic long hollow 

cylinder, where the outer curved surface is perfectly insulated, and heat is generated due to γ-ray irradiation. 

The material inhomogeneity is modeled by assuming that the elastic modulus and the coefficient of thermal 

expansion vary as the nth power of the radial distance, while the coefficient of thermal conductivity varies 

linearly with the radial distance. The variation of hoop stress at the inner wall of the cylinder is presented 

graphically for different values of cylinder thickness. 

 

1. Introduction 

The study of non-homogeneity in aeolotropic (anisotropic) materials has recently become a significant focus in 

the mechanics of solids. Due to manufacturing processes and various technological factors, elastic solid bodies 

often exhibit not only anisotropy but also different forms of material non-homogeneity. 

Considerable attention has been given by researchers to the analysis of thermal stresses in isotropic cylinders 

subjected to internal heat generation caused by axisymmetric radiation. Well [15] addressed the problem of 

determining thermal stresses in isotropic cylinders with perfectly insulated outer curved surfaces, where the 

source of heat generation is γ-ray irradiation. Bagchi [1] extended this study to non-isotropic materials. Mollah 

[7] further investigated the problem for an in-homogeneous transversely isotropic long hollow cylinder, 

assuming that the elastic coefficients, coefficient of thermal expansion, and thermal conductivity vary linearly 

with the radial distance. 

The present paper generalizes the aforementioned work. Here, the material non-homogeneity is modelled by 

assuming that both the elastic coefficients and the coefficient of thermal expansion vary as the nth power of the 

radial distance r, while the thermal conductivity varies linearly with r. 

Furthermore, the material of the long hollow cylinder is considered to be a transversely isotropic elastic solid, 

with its outer curved surface perfectly insulated. The internal heat is assumed to be generated due to γ-ray 

radiation. Numerical results are also presented for magnesium, showing that the hoop stress at the inner 

boundary increases progressively with the thickness of the cylinder for arbitrary values of the absorption 

constant. 

 

mailto:chaudhurimira86@gmail.com


 
 

2 | P a g e  

 

2. Formulation, temperature profile and assumptions 

We use a cylindrical coordinate system, with the z-axis aligned along the axis of the cylinder. Let the 

temperature distribution be axisymmetric and independent of the axial coordinate. The rate H at which heat is 

generated within the cylinder varies according to the law given in [4]. 

 

where  

Hi = heat generation rate on the inside wall of the cylinder, 

a = inside radius and  

µ = the absorption coefficient for the γ-ray energy. 

For the present problem the temperature T satisfies the conductivity equation Love [5]  

 

where K  is the terminal conductivity of the material obeying the law 

 

where K0 being a non-zero positive constant. 

Using (3) we get from (2)   

 

Since the outer wall is insulated and the inner wall is maintained at a constant temperature, the boundary 

conditions are as follows: 

 

The solution of the equation (4) subject to the condition (5) is 
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3.  Mechanical stress patterns: 

Assuming the axially symmetric character of the problem, the non-vanishing components of stress tensors are 

σrr, σθθ, σzz, and σrz. Thus the stress-strain relations for transversely isotropic material are given by [13] 
 

 

Where 

 

are elastic coefficients and for inhomogeneity they are assumed to be functions of r, T is the temperature at a 

point (r, θ, z) and α1
’ and α2

’
 are the coefficients of linear thermal expansion along and perpendicular to the z-

axis respectively.  

Now, the strain components for the problem are given by 
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A distribution of normal force, as given by equation (17), is required to be applied at the ends of the cylinder in 

order to maintain w=0 throughout the structure. 

Let us assume that an axial stress σzz = c1 (constant) (a constant) acts on the system. By choosing c1 

appropriately, we can ensure that the resultant axial force on the ends becomes zero. According to Saint-

Venant’s principle, this specific distribution of axial stress will produce localized effects only near the ends of 

the cylinder. 

Due to the superposition of the uniform axial stress c1 the radial and hoop stresses, σrr, and σθθ remain 

unaffected. However, the axial displacement u is influenced. This is the generalized form of the result 

obtained by Mollah [7] in this context. 

Accordingly, a term c1/c13 must be added to the expression for u in equation (16). 

Setting aside the detailed analysis of displacement, we proceed to apply the boundary conditions in order to 

determine the constants A1 and A2 for our specific problem. 

 

Using the boundary conditions (18) and the expression for rr  as given in (17) we get  
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Substituting the values of A1 and A2 we get the stress components from (17) as follows: 
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4. Computational Results and Analysis:  

We now consider some numerical results for the following range of parameters: 10 per cm. ≤ μ ≤ 30 per cm., 

1.5 cm. < b < 6.0 cm. and a =1 cm. 

We consider the material to be made up of magnesium for which the elastic constants on the inner boundary r = 

a = 1 are given by [17]  

 

 

The coefficients of linear thermal expansion of the said material on the inner boundary r = a =1  

are  
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and show graphically for different values of b and µ =20 in Fig.-2.6. It is seen that the hoop-stress increases as 

the radius of the outer circular section of the annulus increases. 
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