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Abstract

The aim of this paper is to analyze thermal stresses in an inhomogeneous transversely isotropic long hollow
cylinder, where the outer curved surface is perfectly insulated, and heat is generated due to y-ray irradiation.
The material inhomogeneity is modeled by assuming that the elastic modulus and the coefficient of thermal
expansion vary as the nth power of the radial distance, while the coefficient of thermal conductivity varies
linearly with the radial distance. The variation of hoop stress at the inner wall of the cylinder is presented

graphically for different values of cylinder thickness.

1. Introduction

The study of non-homogeneity in aecolotropic (anisotropic) materials has recently become a significant focus in
the mechanics of solids. Due to manufacturing processes and various technological factors, elastic solid bodies
often exhibit not only anisotropy but also different forms of material non-homogeneity.

Considerable attention has been given by researchers to the analysis of thermal stresses in isotropic cylinders
subjected to internal heat generation caused by axisymmetric radiation. Well [15] addressed the problem of
determining thermal stresses in isotropic cylinders with perfectly insulated outer curved surfaces, where the
source of heat generation is y-ray irradiation. Bagchi [1] extended this study to non-isotropic materials. Mollah
[7] further investigated the problem for an in-homogeneous transversely isotropic long hollow cylinder,
assuming that the elastic coefficients, coefficient of thermal expansion, and thermal conductivity vary linearly
with the radial distance.

The present paper generalizes the aforementioned work. Here, the material non-homogeneity is modelled by
assuming that both the elastic coefficients and the coefficient of thermal expansion vary as the nth power of the
radial distance », while the thermal conductivity varies linearly with r.

Furthermore, the material of the long hollow cylinder is considered to be a transversely isotropic elastic solid,
with its outer curved surface perfectly insulated. The internal heat is assumed to be generated due to y-ray
radiation. Numerical results are also presented for magnesium, showing that the hoop stress at the inner
boundary increases progressively with the thickness of the cylinder for arbitrary values of the absorption

constant.
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2. Formulation, temperature profile and assumptions
We use a cylindrical coordinate system, with the z-axis aligned along the axis of the cylinder. Let the
temperature distribution be axisymmetric and independent of the axial coordinate. The rate H at which heat is

generated within the cylinder varies according to the law given in [4].
H=He ™ (1)
i

where

H; = heat generation rate on the inside wall of the cylinder,

a = inside radius and

4 = the absorption coefficient for the y-ray energy.
For the present problem the temperature 7 satisfies the conductivity equation Love [5]
d’T 1dT LdKdT _ o cu(r-a)

+

K ar a9
dr? v dr dr dr 1 (2)

where K is the terminal conductivity of the material obeying the law
K=K r (3)

where K being a non-zero positive constant.

Using (3) we get from (2)

d’T  dT _ _ie_,u(r_a)
P (4)

r

Since the outer wall is insulated and the inner wall is maintained at a constant temperature, the boundary

conditions are as follows:

T=T (constant) on r=a
1

and (5)
E =0 on r=>b
dr
The solution of the equation (4) subject to the condition (5) is
r:r+pr_i]+i—lg““”) ©)
1 a ror
where
o a H
A=(1+ub)e " )andp= L (7)
K M
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Assuming the axially symmetric character of the problem, the non-vanishing components of stress tensors are

Oy, 096, 0z, and o,-. Thus the stress-strain relations for transversely isotropic material are given by [13]

c =c¢ e +c +¢ e -b T
T 11 rr 12 @480 13 zz
r r r r
c =c¢c e +c¢ +¢c e -b T
aa 12 rr 11 88 13 Zz 1
r r r r
c =c¢ e +c¢ +¢ e -b T
zz 13 7 13 44 33 zz 2
r
a =cC e
ro 44 rz
Where
r r r r r
b :(c +c )(x +c¢ «
1 11 2 13 2
r r r r r
b =2¢ a +c¢ «
2 13 1 33 2

(8)

®)

are elastic coefficients and for inhomogeneity they are assumed to be functions of », T is the temperature at a

point (r, 6, z) and a;” and oy’ are the coefficients of linear thermal expansion along and perpendicular to the z-

axis respectively.

Now, the strain components for the problem are given by

du u
e = —, e
rr dr 8o ¥ zz

where u =u, u, =0, u =0.
.

For non-homogeneity of the material we assume

L r
c =cr'", and a =ar

ij ij i i

n

where c¢;; and a; are non-zero positive constants.

The relations (8) with (10) and (11) give

du
n & n-1 2n
o =c¢cr —+ec r u—br-"T,
r 11 dr 12 1 i
du 1 5
o =c¢c r'—+c " u—-br"T,
66 12 dr 11 1
du 2
n n-1 2n
o =c¢ r —+e r u—»br T,
zz 13 dr 13 2
where
h = (c +c )a +c a l
1 11 12771 13 2
b =2c a +c a . J
2 131 33 3

=—., e =0 and e
;

(10)

(11)

(12)

(13)

3|Page




International Journal of Advanced Technology in Engineering and Science g

Vol. No. 13, Issue No. 08, August 2025 jjates
www.ijates.com ISSN 2348 - 7550

The stress equations of equilibrium in the absence of the body forces are
[14]

o o o —c o oo o
mn + "z + n &g — 0 and i + 22 + | o J—
or oz r or oz r 14)

The second equation of (14) automatically holds and the first, by
(12) and (6) becomes to

o d’ di ¢,
ro 1"’+(n+l)ri+ n—22 1| u
dr

2

dr .
b _
=1 [2{H[T + -4 p)} T e (2n—-1)Apr”
c 1 a
11
_p{(Zn—l)—yr}r”eﬂ(f'a)] (15)

The particular integral of the equation (15) is [16]

1- A
b 20 (T1+ a p) o1 (2n-1DAp
u= 1 r +
(e (n+1)(2n+1)+s 2n” +s
pe”® 1 By [ -Bit(n-) ( —ur g
S — N 2n-1)— urte “'dr
e NI { }

+ P2 x Ir_ﬁ2+(“_1:'{(2n— 1)~ urte™™ "dr}:l

where

= -4 5
Bi.B:= . " u . S=n‘7€1‘ -1

2 €11

Thus, the general solution of (15) is given by

1—
2 T +——

B B b ”( P] -

HZAIF 1+A2r 241 ! - a . ”_1+Mr”
“h (n=1)(2n+1)+s 2n’ +s

Ha | R

+L }’ﬁl I?" 181 (H )((2}1_1)_‘” r)e—,{”'dr
(’81_'82) a

((2n — 1] — U r)e_’“ Pdr}} (16)

where A; and A; are constants.
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Hence the stresses as calculated from (12) are

ris +(n—l) B +(n—l)
o =c |mAdr! +m A ?
1 11 272

mr

e

+b |2 [T +1;ﬁpJ PR mF (r)—m F (r)
1 (ﬁl_ﬁz){ll 272 }

(2.‘!?-1) _b 1

a 2n-1
Apr
2 lJ 4

‘-“(" —a) ;_211‘ -1

+ blpe

g +(n—l) B +(n—l) 1- A
o =c {m Ar ! +m A7 ? +b| k [T +—p];'2"
ge 12| 11 272 1 O

wa

+ L{(ﬁl+1)E§(r)—(,61+1)F:(r)}}+bl pel )t gy

(B, —8.)
where m!_:,s-+1+ﬁ!_. i = 1,2
n
n"_ﬁ"+s+l
c, 21 (n+1) 2 n
klz ] +1)(2n +1 " +1)(2n +1
e L+ )2n+1)+s  (n+1)2n+1)+s

~

"

FI.(]«) = ;~ﬁf+[n_1] ?~_ﬁj+(”_l){(2n _ 1)_ !1?‘}971[ }'dr

Q

so that F (a) =0, (i=1,2)

A distribution of normal force, as given by equation (17), is required to be applied at the ends of the cylinder in
order to maintain w=0 throughout the structure.

Let us assume that an axial stress o.. = c¢; (constant) (a constant) acts on the system. By choosing c;
appropriately, we can ensure that the resultant axial force on the ends becomes zero. According to Saint-
Venant’s principle, this specific distribution of axial stress will produce localized effects only near the ends of
the cylinder.

Due to the superposition of the uniform axial stress c; the radial and hoop stresses, G, and Ggg remain
unaffected. However, the axial displacement u is influenced. This is the generalized form of the result
obtained by Mollah [7] in this context.

Accordingly, a term ci/ci3 must be added to the expression for u in equation (16).

Setting aside the detailed analysis of displacement, we proceed to apply the boundary conditions in order to

determine the constants A and A; for our specific problem.

o =0, onr=aandr=b(a<b) (18)

Using the boundary conditions (18) and the expression for G, as given in (17) we get
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¥i) +(n—1) ﬁ2+(n—1)
La? - Lb
4 =bh P2 L
1 1 cm
11 1
( (19)
5 +(i?71) ﬁ1+(??71)
Lb! - L a
4 =bh P
2 1 c m
11 1
with
p— 1
aﬁl+(n—l} bﬁ2+(n—l}_aﬁ2+(n—l} bﬁl+(n—l}
where

.5'—(}3—1} JQHTI—F{[I—E}( .5'—(}3—1}

1=(n+1} (2}3—!—1}—#3 }J+1} (2H+1}+.5'

Yt G e 0 GO

F (2}12 + .5']

_ s—(n—1) 20 +I B [s—(n-1)lp?”
LZ_(H+]} (2n+]}+sb Tl 1(1 ;V}a(n+1}(2n+]}+s

+ A (” o 1}{3 o (” o 1)} bzn -1 o bzn -1 _.-“(E’ - ‘-'7}

\
e +fl(b}
n[2n2+3] Jp

L T
é.‘"

and fl(}) = m[ml}?l(r) — szz (}}}

Hoa

=4

fl () = m[}nl}?‘(b} —m, Fz (b}:|

Substituting the values of A and A, we get the stress components from (17) as follows:
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gr.r 3_{”_1} A R
b =(n—1} {En—l}—sﬁ@Jl{}J_F@:(}J (20)

qz?ll[r']= P[ Rla” —RJJJ” J—J': "

TR U7 P R 1 .
04(1)= P R{(1-2) ?{_}r ljx Pl 1}{:: (n=1)}5 il
- I (n+1) (2n+1)+5 N ]

R A}{f—(n—l:j}b:” o
! aln+1) 2n+1)+s

{J‘?_U{S_ ”} u(r-a) in-1 )
+ 2 : . . .
" (EHJ - s} o } fl(”

S’=1_'{ {57[_11—1]:} —.»{['”_lr}{s_['”_l}}
a (n+lf2n=l)+s nl 2n° —5]

%

—EJJH_I E—;J:b—ﬂ} _._.fii EJ}

B +(n-1) F_+(n-1 B_+(n-1) F +(n-1
1=|.IJl }}.J ]_L;JJ ]},1 ]

F.+ln-1) g +(n-1) f o=(n-1) g +(n-1)
R =a’ r! -a ! r2
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le C 1—- A4 2
g6 _ _12 i i In
5 o [nlw1(1)+n2w2(1):|+kl[Tl+ " p)l
1 1
e,.::a
+—;§—ij;§——[{(;314—1) P}(l)—k(ﬁ?z +—1)F2(1)}
1 2
n({z2n —1 _ —pulr—a n—
+ —l——————l—-bl] Apr ™ "'+ pe ul }rz roo(21)
2n° -8
where
£, +(a-1) £, +(a-1)
B —(n—l] L_a - —Lb -
W [1‘}=1‘ L +bP—2 L
1 1 c m
11
P R R
g +(n-1) Lb —L a
w (r)=r 2 +bpPp- 2
2 1 c m
1 2

4. Computational Results and Analysis:

We now consider some numerical results for the following range of parameters: 10 per cm. < p < 30 per cm.,
1.5cm. <b<6.0cm. and a=1 cm.

We consider the material to be made up of magnesium for which the elastic constants on the inner boundary » =

a = I are given by [17]
!

¢y =¢;p =0.565 x 10"* Dynes / cm®

’

Gy =€y =0232 X 10" Dynes / cm’
' 12 2

¢;3 =¢y3 =0.181 x 107" Dynes /cm

C33 =C33 =0.587 x 10" Dynes / cm’

’

Cyy =Cyy =0168 x 1012D_vnes/cm2

The coefficients of linear thermal expansion of the said material on the inner boundary r = a =1

are
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a, =a,=277x10" cms/°C

a, =a,=2066x 10 °cms/°C

Further we choose arbitrarily 7;=500°C and H;= 1.

Using the above data we calculate

a [: 1071 aggl,.q,zl}

and show graphically for different values of » and ¢ =20 in Fig.-2.6. It is seen that the hoop-stress increases as

the radius of the outer circular section of the annulus increases.
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Fig.-2.6: Variation of the hoop-stress on the inner wall with the

radial distance of the cylinder whenp = 20.
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