
International Journal of Advanced Technology in Engineering and Science                 www.ijates.com  

Volume No 03, Special Issue No. 01, May 2015                                        ISSN (online): 2348 – 7550  

118 | P a g e  

A NEW APPROACH FOR DEADLOCK DETECTION 

AND REMOVAAL FROM DISTRIBUTED DATABASE 

SYSTEMS 

Mohit Bhardwaj
1
, Dr. Parul Tomar

2 

1,2
YMCA University of Science and Technology, Faridabad, Haryana (India) 

 

ABSTRACT 

A Distributed database system (DDBS) is a collection of databases distributed over several sites interconnected 

by a communication network. It provides a resource-sharing environment where database activities can be 

performed optimally both in global and local framework. The distributed nature of database demand full proof 

control structure for its proper and effective functioning. Therefore the allocation of the resources should be 

properly controlled otherwise it may lead to several anomalies such as concurrency of transaction, 

synchronizing of events and deadlocks. A deadlock is a state where some processes request for some resources 

but those resources are held by some other processes. Occurrence of deadlock in a system will lead to resource 

wastage and breakdown of the system. This paper provides a new approach for detection and removal of 

deadlock in distributed databases. 

 

Keywords: Database, Distributed Database, Deadlock 

 

I. INTRODUCTION 

 

A distributed database management system ('DDBMS') is a software system that permits the management of a 

distributed database and makes the distribution transparent to the users [1]. In Distributed database system 

model, the database is considered to be distributed over several interconnected computer systems. Users interact 

with the database via transactions[2,3].Execution of transaction can lead to deadlocks in the system. 

A deadlock is a situation in which the processes holding some resources request for the access of resources held 

by other processes in the same set. The simplest illustration of a deadlock consists of two processes, each 

holding a different resource in exclusive mode and each requesting an access to resources held by other 

processes. Unless the deadlock is resolved, all the processes involved are blocked indefinitely. Therefore, a 

deadlock requires the attention of a process outside those involved in the deadlock for its detection 

andresolution. 

 

 

 

 

 

Figure 1 Deadlock Example 

 

ll 



International Journal of Advanced Technology in Engineering and Science                 www.ijates.com  

Volume No 03, Special Issue No. 01, May 2015                                        ISSN (online): 2348 – 7550  

119 | P a g e  

In Figure 1 a simple deadlock condition is shown. Assuming two processes P1 and P2 requested some resources 

for their computation. If the resource requested by process P2 is held by process P1 then P2 would be waiting 

for P1 to release the required process. Similarly at the same time if the resource requested by Process P1 is held 

by P2 and P1 is waiting for P2 to release the requested process. This situation leads to a deadlock. 

Distributed database systems are very prone to deadlocks as different sites are unable to keep track of the 

transactions running at other sites[4]. 

There are three different techniques to handle the deadlocks[5]: 

 Prevention: This technique prevents the system from making any deadlock. In this technique information of 

the all resources which are allocated to some process is recorded. Now if a process requests for some 

resources, the system will grant only when all the resources are available. System will make sure that not a 

single resource which is requested is required or hold by some other process. 

 Detection: This technique is used to detect existing deadlock in the system. When Resource allocation is 

fair and processes holding and waiting for resources results in deadlock. When a deadlock occurs it should 

be detected and resolved as soon as possible for good efficiency of the system. 

 Removal: When a deadlock is detected in a system, it must be removed by terminating some process. 

Removal of deadlock needs the roll back facility to the terminated process. There are various strategies for 

deadlock removal such as time stamping, youngest process removal, priority based removal etc. 

 

II. ISSUES IN DEADLOCK DETECTION 

 

 Deadlock detection involves two basic tasks: maintenance of the state graph and search of the state graph 

for the presence of cycles. Categorization of deadlock detection algorithm largely depends upon the manner 

in which the state graph information is maintained. There are three types of algorithms for deadlock 

detection in distributed systems[6]: 

 Centralized algorithms: In centralized algorithms the state graph is maintained at a single designated site, 

which has the sole responsibility of updating it and searching it for cycles. 

 Distributed algorithms: In distributed algorithms the state graph is distributed over many sites of the system, 

and a cycle may span state graphs located at several sites, making distributed processing necessary to detect 

it. 

 Hierarchical algorithms: In hierarchical algorithms sites are arranged in a hierarchy, and a site detects 

deadlocks involving only its descendant sites. Hierarchical algorithms exploit access patterns local to a 

cluster of sites to efficiently detect deadlocks.  

 In a distributed system it is very difficult to identify the deadlocks as there is no global memory and 

communication occurs solely by messages. It is difficult to design a correct deadlock detection algorithm 

because sites may receive out-of-date and inconsistent state graphs information of the system 

 The next section will give a new algorithm which will check for deadlock in local system first and then will 

detect the deadlock in a distributed system.This protocol will remove the possibility of false deadlock and 

will detect all the deadlocks in the system. 

 

 

 



International Journal of Advanced Technology in Engineering and Science                 www.ijates.com  

Volume No 03, Special Issue No. 01, May 2015                                        ISSN (online): 2348 – 7550  

120 | P a g e  

III. PROPOSED MODEL 

 

A process P arrives at site j and it request some resources. This request can be for any data from any site. Rp 

Denotes requested data (R1 R2 R3) where these sites R1 R2 R3  ... can be at any site i.e. process P could request 

some data from its home site and some data from some other site or it could request all data from home site or 

all data from other sites. After process P’s arrival algorithm counts total number of resources requested by the 

process P and stores it in a variable “total”. 

 

 

 

 

For each requested data by new comer process P, algorithm checks whether this requested data belongs to the 

home site or not. If it belongs to the home site then localAllocation function will be called. Requested data is 

passed in localAllocation function. If the requested data belongs to some site other then the home site then 

globalAllocation function will be called. 

 

 

 

 

 

 

 

 

 

 

 

If the requested resource belongs to the home site then algorithm will check whether it is free or not. If it is free 

then algorithm will call checkLocalDeadlock function to check whether there is some local deadlock or not and 

then system will allocate Resource to Process P. If Resource requested at home site by Process P is not free then 

algorithm first call checkLocalDeadlock function and change the status that Process P is waiting for Resource.  

 

 

 

 

 

 

 

 

If the requested resource belongs to some site other then the home site then algorithm will check whether the 

requested resource is free or not. If the requested resource is free then the algorithm will call 

checkGlobalDeadlock function to check whether there is some global deadlock or not and then system will 

A Process P arrives at site j and requests some resources. 

Rp Denotes requested data from various (R1 R2 R3 …) sites by new process P. 

Total = count (Rp); 

 

For (i=0; i<total; i++) { 

If (xi belongs to Sj) { 

  localAllocation(xi); 

}  

Else { 

 Status = checkLocalDeadlock(); 

 If(Status == NoLocalDeadlock) { 

  globalAllocation(xi); 

 } 

 Else { 

  Print(“Can’t Allocate as local deadlock is present”); 

 } 

} 

} 

Function localAllocation(Ri) { 

If (Ri is free) { 

 checkLocalDeadlock(); 

 Allocate Ri to P; 

} 

Else { 

 checkLocalDeadlock(); 

 P waiting for Ri; 

} 

} 



International Journal of Advanced Technology in Engineering and Science                 www.ijates.com  

Volume No 03, Special Issue No. 01, May 2015                                        ISSN (online): 2348 – 7550  

121 | P a g e  

allocate Resource to Process P. If Resource requested at global site by Process P is not free then algorithm first 

call checkGlobalDeadlock function and change the status that Process P is waiting for resource Ri.  

 

 

 

 

 

 

 

checkLocalDeadlock function will first create a local vector array. A local vector array is a series of processes 

waiting for one another. For example: P1 -> P2 -> P3 -> P4 -> P5, here P1 is waiting for P2, P2 for P3, P3 for 

P4 and P4 for P5. Now for each vector array formed, algorithm will check for circular wait in the vector array. If 

one process comes twice in a single vector array then it is called “localCircularWait” and it results into a 

deadlock. If any deadlock found removeDeadlock function is called by passing the value of that vector array to 

the function. 

 

 

 

 

 

 

 

 

checkGlobalDeadlock function will first create a global vector array. A global vector array is a series of 

processes waiting for one another at different sites. Now for each global vector array formed, algorithm will 

check for circular wait in the vector array. If one process comes twice in a single global vector array then it is 

called “globalCircularWait” and it results into a global deadlock. If any deadlock found removeDeadlock 

function is called by passing the value of that global vector array to the function. 

Main difference in checkLocalDeadlock and checkGlobalDeadlock function is, checkLocalDeadlock make a 

local vector array for a single site on which it is called. All the transactions on that site are taken into account to 

check for a deadlock at that site. On other hand checkGlobalDeadlock function creates a global vector array 

which includes two or more sites. All the transactions of included sites are taken into account to check for a 

global deadlock in the system. 

 

 

 

 

 

 

 

Function checkLocalDeadlock() { 

 Create Local Vector arrays VAi; 

 Foreach(VAi) { 

  Starting from Process P 

  If (localCircularWaitFound) { 

   Deadlock occurred; 

   removeDeadlock(VAi); 

  } 

} 

} 

 

Function checkGlobalDeadlock() { 

 Create Global Vector arrays VAi; 

 Foreach(VAi) { 

  Starting from Process P; 

  If (globalCircularWaitFound) { 

   Deadlock occurred; 

   removeDeadlock(VAi); 

  } 

} 

} 

 

Function globalAllocation(Ri) { 

If (Ri is free) { 

 checkGlobalDeadlock(); 

 Allocate Ri to P; 

} Else { 

 checkGlobalDeadlock(); 

 P waiting for Ri; 

} 

} 

 



International Journal of Advanced Technology in Engineering and Science                 www.ijates.com  

Volume No 03, Special Issue No. 01, May 2015                                        ISSN (online): 2348 – 7550  

122 | P a g e  

If there is a deadlock in our system, whether a local or a global, it must be removed as soon as possible to make 

our system deadlock free and to make it run properly without any error.removeDealock function takes a vector 

array as an input. This vector array contains the list of processes involved in the deadlock and making the 

system stand still.  

Starting from the first process, eliminate it from the list and check for the existence of deadlock in the rest of the 

processes. If there is no deadlock present then terminate the eliminated process and make our system deadlock 

free.  

If there is still a deadlock in our system, First we will include last terminated process in our vector array again 

and then move to next process and eliminate that process and check for the deadlock in rest of the processes 

including the previous eliminated process. If no deadlock found terminate this process and make our system 

deadlock free if not then move the next process and repeat the above process till no deadlock in the system. 

Process of removing a local or a global deadlock is same we have to check for a cycle in our vector array which 

is formed using DTS or LTS and a transaction which will give less over head will be removed. 

 

3.1 Algorithm for Deadlock Removal is Given Below  

 

 

 

 

 

 

 

 

 

 

 

 

 

I. CONCLUSION 

 

 

IV. CONCLUSION 
 

Deadlocks in distributed databases are very hard to determine. Some times this determination can lead to the 

detection of false deadlocks and sometimes some deadlocks remain undetected. Using this newly proposed 

algorithm the number of messages sent over the network has been reduced by putting a condition at local site 

that if there is a deadlock at local site then request for global allocation won’t be entertained. Also in order to 

remove deadlock newest transaction won’t be removed to, a transaction which results in zero deadlocks in the 

system will be terminated. 

 

 

 

Function removeDeadlock(VA) { 

 Make a list of processes in Vector Array (VA). 

 Foreach (process p) { 

  Eliminate process p; 

  Create a vector array for the rest of the processes. 

  If one process occurred twice in the vector array  

CircularWaitFound = true; 

Else 

CircularWaitFound = flase; 

  If (CircularWaitFound) { 

   Include the last eliminated process; 

   Continue; 

  } 

  Else { 

   Terminate process P. 

   Deadlock Removed; 

  } 

 } 

} 

} 

 



International Journal of Advanced Technology in Engineering and Science                 www.ijates.com  

Volume No 03, Special Issue No. 01, May 2015                                        ISSN (online): 2348 – 7550  

123 | P a g e  

REFERENCES 

 

[1]. Wikipedia (http://en.wikipedia.org/wiki/Database). 

[2]. Amjad Umar, “Distributed Database Management Systems Issues and Approaches”, Technical Report No. 

88-8, July 1988. 

[3]. MasoomehGhodrati, , Ali Harounabadi, “Provide a New Mapping for Deadlock Detection and Resolution 

Modeling of Distributed Database to Colored Petri Net”, International Journal of Computer Applications 

(0975 – 8887), Volume 95– No.5, June 2014. 

[4]. B.M. MonjurulAlom, FransHenskens, Michael Hannaford, “Optimization of Detected Deadlock Views of 

Distributed Database”, International Conference on Data Storage and Data Engineering,2010. 

[5]. MukeshSinghal, Deadlock Detection in Distributed Systems, SURVEY & TUTORIAL SERIES, Nov. 1989 

[6]. JersiBrezezinski, Jean-Michel Helary, Michel Raynal,” Deadlock Models and General Algorithms for 

Distributed Deadlock Detection”, Journal of Parallel and DistributedComputing, Volume 31, Issue 2, 

December 1995. 

http://en.wikipedia.org/wiki/Database

