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ABSTRACT 

A variety of schemes based on the technique of Probabilistic Packet Marking (PPM) have been proposed to 

identify Distributed Denial of Service (DDoS) attack traffic sources by IP trace back. These PPM-based 

schemes provide a way to reconstruct the attack graph - the network path taken by the attack traffic - hence 

identifying its sources. Despite the large amount of research in this area, the influence of the underlying 

topology on the performance of PPM-based schemes remains an open issue. Distributed Denial-of-Service 

(DDoS) attacks are a critical threat to the Internet. However, the memory less feature of the Internet routing 

mechanisms makes it extremely hard to trace back to the source of these attacks. In this paper, we propose a 

novel trace back method for DDoS attacks that is based on entropy variations between normal and DDoS attack 

traffic, which is fundamentally different from commonly used packet marking techniques.we identify five 

network-dependent factors that affect different PPM-based schemes uniquely giving rise to a variation in and 

discrepancy between scheme performances from one network to another. Using simulation, we also show the 

collective effect of these factors on the performance of selected schemes in an extensive set of 60 Internet-like 

networks. We find that scheme performance is dependent on the network on which it is implemented. We show 

how each of these factors contributes to a discrepancy in scheme performance in large scale networks. This 

discrepancy is exhibited independent of similarities or differences in the underlying models of the networks. 

 

I. INTRODUCTION 

 

Internet Protocol (IP) trace back is a technique for identi- fying the sources of Distributed Denial of Service 

(DDoS) attacks from its traffic . One approach to implementing IP trace back ensures that the routers embed 

their identity in packets randomly selected from all the packets they process . In the event of an attack, the 

victim uses the packets that contain router identities to construct an attack graph. The attack graph is a 

representation of the routers and links that the attack packets traversed from the attacker(s) to the victim. This IP 

trace back type is called probabilistic packet marking (PPM) and is implemented by PPM-based schemes. A lot 

of intensive research has gone into designing PPM- based schemes that are computationally more efficient and 

robust than the original PPM. However, little work has gone into identifying network-dependent factors that 

affect the performance of PPM-based schemes in large-scale networks. In fact, most simulations are carried out 

on disparate tree- structured topologies and the analytical models derived from these topologies are used to 

predict the performance of the schemes when deployed in a large-scale network such as the Internet . However, 

since the schemes are implemented on disparate networks, it is difficult to directly compare the performance of 
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different schemes. Furthermore, because typical underlying topologies are tree-structured, it is difficult to make 

appropriate projections about scheme performance in a large-scale network without implementing the scheme 

on that network. In this work, we show the influence of network topology on PPM-based scheme performance. 

We identify three network- dependent factors that affect scheme performance in large- scale networks. These 

factors include average shortest path length, overlapping of attack paths, and the occurrence of network motifs 

in attack graphs. Using specific attack graphs, we show the influence of each factor on selected PPM- based 

schemes. We then use 60 Internet-like networks to show how all the identified factors collectively contribute to 

the performance of PPM-based schemes in more realistic scenarios. The networks are selected to encompass the 

variety of mathematical models used by researchers to create networks that adequately describe the structure of 

the Internet. Results show that PPM-based scheme performance is de- pendent on the network on which it is 

implemented. In fact, even the order of performance changes from one network to another, i.e. the best 

performing scheme in one network is not necessarily the best performing scheme in another network. Our 

results show how the identified factors contribute, both individually and collectively, to the PPM-based 

schemes’ performance in large scale networks. 

 

II.UNDERLYING TOPOLOGIES 

 

A variety of underlying topologies have been used to evaluate the performance of PPM-based schemes. Some 

schemes use a single path single attacker (SP/SA) topology to simulate a Denial of Service (DoS) attack [2], [3], 

[5], [6], [8]. In these cases, the length of the attack path is different ranging from 3 hops to 32 hops. Other 

schemes utilize trees as their underlying topologies for simulation. These include binary trees in [4], [3], [10] 

ranging from 6 hops to 10 hops. Other tree structures such as random tree networks are used in [3], [8]. Yet 

other schemes utilize internet topology datasets such as traceroute datasets and skitter maps [9]. While these 

topologies are significantly larger than other topologies (up to 174,409 nodes), they do not easily lend 

themselves to simulations and, consequently, comparisons with other schemes. 

 

Fig 2. Binary Tree Topology  

 

III. SIMULATION STUDY 

 

The 60 networks that are considered in this study and some of their properties. These properties include the 

setup properties such as the underlying model, and appropriate settings required to build each specific network. 
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Additionally, network specific properties, e.g. average shortest path length, and network motif IDs are shown. 

Each of the networks consists of 1000 nodes representing routers in a network, all of which employ the marking 

schemes. One of the nodes is selected to be the victim and 50 other nodes are randomly selected to be the 

attackers. Constant Bit Rate (CBR) sources of traffic are implemented at the attackers, and the convergence time 

for the entire attack graph is measured in packets. This simulation is executed 200 times for each network and 

each marking scheme. 

        

Fig 3. (a) Number of Network Attack Notes Fig 3. (b) Constant Bit Rate 

 

IV. OVERLAPPING OF ATTACK PATHS 

 

In this subsection, we show how the level of overlap between two attack paths affects the schemes’ convergence 

times. We consider a Y-shaped attack graph linking attackers A1 and A2 to victim V (cf. Fig. 2). While keeping 

each attack path equal and constant, we vary the amount of overlap between the attack paths and observe how 

the convergence times of PPM, TMS, and PBS are affected. Fig. 6 shows the observed results from this 

investigation. The results show that there is a general reduction in con- vergence times for all considered 

schemes as the percentage overlap is increased. Despite the general reduction for all 3 considered schemes, the 

level of overlap affects each scheme uniquely. For example, the results show that PPM and TMS are relatively 

unaffected by low amounts of overlap, i.e. 0-20% while PBS exhibits a reduction in convergence times in the 

same overlap range. However, further increase in percentage overlap causes a drastic decrease in the 

convergence time of TMS such that by 60%-70% TMS has lower conver- gence times than both PBS and PPM. 

These results show three things: Firstly, larger amounts of overlapping attack paths translates to reduced 

convergence times; Secondly, low amounts of overlapping attack paths affects PBS more than PPM and TMS; 

and thirdly, medium amounts of overlapping cause a drastic reduction in TMS convergence times. In the context 

of a larger network, these results mean that even for long path lengths, the existence of common and therefore 

overlapping attack paths translates to reduced convergence times for TMS and PBS more than it does for PPM. 
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Fig 4. (a) TMS convergence times Fig 4.(b) PBS 

 

V. MAXIMUM ENTROPY RANDOM WALK 

 

Instead of using GRW, Burda et al. [15] introduce the construction of Maximum Entropy Random Walk 

(MERW), where the transition matrix is defined by the entries pi,j as follows. 

pi,j =ai,j λ ψjψi 

 

Fig 5.Entropy Random Walk 

The term λ is the largest eigenvalue of A and ψ its corresponding normalized eigenvector withi ψ2 i =1. Thus, 

the transition probabilities of the random walk process are similar to the eigenvector centrality of the nodes, 

which is regarded as one way of describing the influence of a node within the topology. The same way of 

defining entropy within a network and setting the transition probabilities accordingly to maximize entropy were 

also discussed by Demetrius and Manke in [17]. They further establish a relationship between entropy and the 

robustness of the average shortest path length since networks that have a higher entropy are also more robust 

toward removal of nodes. The stationary distribution of finding a query packet at node i with MERW and its 

entropy rate are then according to [15] as shown in Eqns. (6) and (7).π∗ i = ψ2 i (6) SMERW = logλ 

(7)Unfortunately, the definition of the transition probabilities in Eqn. (5) requires knowledge of the largest 

eigenvalue of the adjacency matrix and its corresponding eigenvector. This can only be determined if the 

topology is fully known and is usually not very practical, especially in large networks. However, it was shown 

by Sinatra et al. [16] that the maximum entropy random walk can be constructed only with limited and local 

information based on the degrees of the first and second hop neighbors of each node. 
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5.1 Average Number of Hops  

The average number of hops for a query packet indicates the speed of search within the network. Figure 3 shows 

the average hop count until finding one of the destinations for the three different methods with R = 50destination 

nodes and the network size N varying from 200 to 1000. The results for the scale-free topology are shown in 

Fig. 3(a) and for the small-world topology in Fig. 3(b). 

   

Fig 5.(a)  Scale-Free Topoloy  Fig5(b) Smal –world topology 

 

VI. CONCLUSION AND FUTURE WORK 

 

In this paper we studied the feasibility of applying a random walk query search in a data-centric network under 

random and complex topologies. For suitable topologies, random walk does not necessarily perform much 

worse than the commonly used flooding mechanism. On the contrary, since only a single path is followed during 

the query search, fewer nodes are involved in the dissemination process, which leads to a lower consumption of 

energy. We have seen that a maximum entropy random walk improves the general random walk in performance 

by counteracting the irregularities in topology to balance the reachability probability of the destination nodes. 

Furthermore, only a small number of destination nodes in the network is sufficient to provide replicas of the 

desired content for achieving performance compared to flooding for both small world and scale-free topologies. 
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