

222 | P a g e

AN OPTIMIZED PARALLEL SCHEDULE FOR RIGID

BASED JOB ALLOCATION STRUCTURE

Harpreet Singh
1
, Vishal Arora

2

1
Research Scholar

2
Assistant Prof. SBSTC, Ferozepur (India)

ABSTRACT

Batch processing,a multiprogramming model can be extended over parallel system to perform parallel

processing. Allocating a batch of jobs immediately depends on the behavior and structure of a scheduling

algorithm. Tremendous amount of efforts required to make optimized parallel schedule. Selection of a particular

job set from among several alternatives for current schedule is the core part of batch scheduling. This research

follows the needs of batch processing environment, batches are arrived at different time interval and scheduled

according to the criteria defined. Each batch contains no. of jobs where each job has a particular demand

available about the no. of processors required.The whole work depends upon current availability of processors

with respect to total demand of each batch required. Previous literature follows proportionate processor width

partitioning where proportionate processors share according to the required demand of job is allocated. Our

work follows improvement to this policy structure by defining a most suitable demand promising model.Such

models are best suitable to rigid jobs where processor demand would not be changed at any cost. Proposed

research followsselection of jobs from a batch which is most suitable to current processor availability. Further

the analysis and comparison are illustrated to exhibits performance of proposed model.

Keywords: Parallel Batch Environment; Proportionate Processor Partitioning; Demand

Promisingmodel; Knap-Sack Based Allocation Scheme; Maximized Processor Utilization; Job

Scheduling Strategy.

I. INTRODUCTION

Scheduling in parallel system is the most difficult task as no. of jobs arrived simultaneously. Parallel schedulers

are little bit one step ahead to the serial scheduler.Such scheduler takes care of current job in memory, although

multiprogramming models are employed but concurrent execution is achieved only in parallel systems.

Effective Scheduling yields the efficient results with the aim that no task adjustment efforts are required later

on. Task replacement is more costly, such efforts can be eliminated if scheduling algorithm considers focus on

system’s existing load status. Some approaches are worked with loosely coupled time sharing environment

where multiple processors have multiple jobs. In such parallel environment, a job is completely allocated to any

processor queue, no partitioning exist among sub module.Although job may revolve around different processors

queues in its execution span for stabilizing system load. Other approaches follow space sharing policy structure

where a large bulk of processor space in a tightly coupled manner are available.Each job ready to schedule will

be scheduled according to the demand of processors required. In general each job has its processor demand

223 | P a g e

available. Actually, job logic is partitioned among given processors required. In other words mapping is

performed between job space to processor space. Effectiveness of such systemsare depends upon the nature of

scheduling scheme employed. In general, focus of time sharing environment is on allocating multiple jobs to a

single processor where as in space sharing policy, the focus is on allocating multiple processors to a single

active job. Further, these approaches can be expressed as different scheduling schemes. Two types of scheduling

schemes are deployed in parallel time sharing environment. Firstly, the scheduler decides how the incoming job

arrivals are distributed to available processors, multiple jobs may be assigned to a single processor. This could

be called as global scheduling.Next local processor scheduling comes in existence where each processor may

have its own local level scheduling which may be different from other processors or it may be homogeneous in

nature. In Space sharing, scheduling among processors is a little bit tricky because now demand oriented jobs

are encountered where each job has different processor demand so scheduler has to decide which job sub-set is

currently best suited to the present processor availability. In such scheduling algorithms the over all system

performance should be maximized, only those jobs are scheduled which provides maximum processor

utilization/computation.This will increase the system throughput and average completion time.Further, different

parallel jobs structures are discussed which are the central part of today parallel environment. For the sake of

parallel software, hardware platforms are designed to incorporatenumber of functional units with the concept of

Flynn’s taxonomy. Some other environment follows network based cluster interconnection, a framework

deployed over multi-computer network to make massive parallel systems for analysis of distributed parallel

applications. Similar operation is performed simultaneously by no. of functional units currently available in the

cluster. Modern eras encompass sockets or remote procedural layers of communication for

 reliable cluster programming. Some researches, on the other side contributing their efforts on parallel simulator

design where simulation environment consists virtually generated task set having burst cycles are then logically

programmed to schedule among no. of processors available. Their results are then measured and recorded up to

a particular barrier point. Analysis would be completed after producing illustrations. Technically these form an

applied model of research science. Most of the researches carried out on the basis of mathematical and scientific

justifications which are a kind of descriptive research model.

II. MODELING PARALLEL WORKLOAD

As the concept of parallel computation begins the structure of job logic changes due to environmental change.

Now the job demands number of processors for concurrent execution of its sub logic. The situation becomes

more complex when simultaneous job arrival exists. The responsibility of the scheduler is to allocate processors

with respect to the current availability. Although processor demand of each job may be molded to manage

processor space. Below are different categories of parallel jobs available [6][7].

(a.) Rigid Jobs – Rigid job structure where a job demands certain no. of processor and must be execute upon

filling this requirement. This policy structure is inflexible in nature because once the processors are

allocated, they must be allocated up to the ending job’s execution life span.

(b.) Moldable Jobs – Moldable jobs where scheduler can modify the processor requirement but once allocated

can not be changed during run time execution. This type of job structure is flexible with respect to the

224 | P a g e

processor availability. Only scheduler has decision to modify the processor demand. Such jobs have

elasticity to mold its logical structure to adapt changes in processor demand [2][3].

(c.) Malleable Jobs – Malleable jobs provides more flexibility scheduler can modify jobs demand at any time

either during initiation of execution or at runtime. This is because parallelism will vary throughout the

execution span of the job.

(d.) Evolvable Jobs – Evolvable jobs are similar to the malleable jobs, they have similar type of structures but

now changes in processor demand is application oriented, jobs itself decides when to modify processor

requirement. This is different from malleable where decision takes place by scheduler but here the

decision is taken by the job itself that is when to change parallelism[6]

This research focuses on rigid based job structure, where no compromise takes place about processing demand.

In order to satisfy the current availability without changing job demand scheduling needs selection of

appropriate sub set of jobs for the current availability.

III. PREVIOUS WORK

Previous literature published as “Moldable Load Scheduling Using Demand Adjustable Policies” focuses on

different adjustment schemes for demand oriented job distribution. Efforts in this research were to perform best

demand adjustment when respective resource set is not available. Its structural schemeexhibits a simulation

design based on moldable scheduling. Different scheduling schemes described with the aim to efficient

management of processor available space. Existing problem statement may be defined as virtually generated

synthetic workload containing simultaneous batch arrivals, number of free available processor set. Now the

problem is to schedule the current batch with respect to the current processor availability. Note that each job in a

batch haspredefined processor demand. So it is possible that total processor demand of current batch will

increases than current availability. If increases then there is a need of demand adjustment. In other words jobs

are considered as moldable and their demand will be modify with respect to current availability.Existing

literature implemented this theory as proportionate processor width partitioning scheme [1], where a

proportionate division of the total availability is given to each job as-

 (1)

 (2)

Variable k in equation 1 specifies the total jobs in i
th

 batch that is the length of i
th

 batch. This equation deals

with calculation of total demand of i
th

 batch where as second condition is actually the PWP demand adjustment

metric. After adjusting demand of each job in i
th

 batch the variable total availability and total batch demand

required will change.

. Below are some conditional constraints which must be satisfied in order to apply PWP policy structure upon

current batch.

a.) When TotalBatchDem is greater than or equal to the CurrentProcessorAvailability.

b.) No. of jobs in the current batch must be less than or equal to the CurrentProcessorAvailability.

225 | P a g e

If the above defined constraints are satisfied only then PWP policy mechanism will be applicable otherwisethe

processors will remain unallocated or the system may adapt other suitable mechanism for that batch. Idea behind

this policy is to schedule the currently available batchcompletely. Consider the situation where the current batch

has total demand as 20 and the current system availability is 30. In this case required processors are less than the

available processors, so no need to adjust the batch demand, batch can be scheduled using any other rigid based

scheduling scheme. Consider the other situation where total batch demand is 20 and current availability is 12

and no. of jobs in a batch is 7. Now both conditions are satisfied, policy will be applicable to this current

schedule.Consider the situations where total batch demand is 34 and current availability is 10 and number of

jobs in a batch are 12. Now the second condition fails, so this results in at the end some jobs in a batch are not

allocatedif applying PWP policy.The reason behind the satisfaction of this condition is that if it satisfied, the

system will always gives at least one processor to each job in a batch, no job

will be unallocated in a batch if this condition is satisfied.

PWP Example–1

Table 1: PWP Policy Pattern-1

Job ID ExistDem Adj. Dem

J1 4 3

J2 2 1

J3 3 2

J4 4 3

J5 5 4

J6 3 2

 21 15

In this table the figures shows that how PWP will modify the demand. Consider this Total No. of jobs 6, total

batch demand 21 and if the current availability is 15. Then how PWP will adjust the existing demand.

Adjusted Demand for J1 is (4 * 15/21) = 60/21 = 2.8 = 3

Now total availability is 15-3=12

And total demand required 21- 4=17

Note that J1 is now scheduled with 3 processors, its demand is modified. Like this calculates the demand for

other jobs.Below isanotherexample showing the effect of PWP policy. In this example if second constraint fails

the system willmake unallocation at the end. Consider we have 10 jobs in batch and we have total availability 8

and total batch demand is 25 then how PWP policy will behaves.

PWP Example–2

226 | P a g e

Table 2:PWP Policy Pattern-2

Job ID ExistDem Adj. Dem

J1 3 1

J2 2 1

J3 3 1

J4 2 1

J5 3 1

J6 2 1

J7 3 1

J8 2 1

J9 3 UA

J10 2 UA

 25 8

Total Availability is 8

No. of jobs in the batch 10

Total Batch Demand is 25

So at most one processor is given to each job and two jobs at the end are unallocated.

Adjusted Demand for J1 is (3*8/25)=0.96 = 1, here note that if the metric result is less than 1 it will be awarded

as 1 as described in this example.

Adjusted Demand for J2 is (2*7/22)=0.63=1

See above some jobs in the batch are scheduled but some at later are not scheduled. So in this situation the

whole batch will not be scheduled until the given constraints are not satisfied. If batch is not scheduled the

processors remain idle and the system waits for the allocated processors to free. Because size of the batch in

terms of number of jobs is more than the current availability. Later the current research workwill focus on a

new methodology based on selection of most optimal jobs from a batch for the current schedule if it is not

possible to allocate the complete batch.

IV. PRESENT WORK

Present work performs optimal selection of jobs from a batch with the aim to maximize processor utilization. In

the previous literature the research shows that demand of the processors will be modified in order to manage

processor availability for the currently arrived batch. Also if given constraints are not satisfied the whole batch

will be unallocated, so utilizing such idle processors via selection of most appropriate jobs from the batch which

must maximize the overall computation. Batch partitioning is performed and remaining jobs are further handled

along with next incoming batch and so on. In this way jobs are scheduled quickly and because of objective

function of maximizing overall computation, the maximum throughput will be achieved.

Another advantage of this approach is that largest jobs are allocated first from a batch keeping aim of

maximizing computation, no present change of job demand occurred at any stage so full utilization of available

processor space. This scheduling methodology follows the pattern of knapsack technique along with dynamic

programming algorithmic structure. Knapsack technique basically used to solve optimization problems where

227 | P a g e

several possibilities or feasible solutions exist but the need of optimality arises [8]. Later the research exhibits

the use of knapsack programming approach to parallel scheduler for the selection of best optimal jobs set for the

current availability.

 Below are the general constraints of knap sack which will be redefined according to our parallel scheduler. 0-1

knapsack problem is followed in the scheduling, either the job is selected or not. In general given a set of n

items each of which as a predefined weight and values. In addition a carry bag having a predefined capacity. So

idea is to select most appropriate items from the set in order to maximize the overall value under limited weight

capacity. This approach is manipulated to implement parallel schedulers where batch of jobs are arrived.

Constraints of 0-1 knapsack problem.

Maximizing Value (3)

Subject to (4)

Where

Variable wj refers to the weight of j
th

 item and variable pjdefines the value of the item j if included, this value

should be maximized. Variable xj belongs to the values 0/1 if the item is included the xj denotes 1 other wise its

value will be 0 meaning that item is not included. WC refers to the overall capacity under which the total weight

should remains [8][9].

Redefining knapsack

knap sack can be redefined according to the parallel scheduler characteristics such as the variable WC can be

represented as total availability of processors, that is the current available capacity of the system. Similarly the

variable j can be used to represent job space. Like wise variable wjand pj can be used to represent demand and

computation time of each job respectively. In this way, the parallel scheduler implemented for selection of

optimal job set from a batch

V. KNAPSACK SCHEDULER LAYOUT

Knapsack approach to parallel scheduler plays an active role in computation speedup as well as throughput.

Layout of the scheduling scheme exhibits a intermediate knapsack pipeline where the most optimal subset is

placed before allocation. Basically a pre-fetch buffer which carries appropriate job set selected for the next

allocation.

Batch Arrivals

228 | P a g e

Fig. 1. Knapsack Scheduler Layout

Knapsack pipeline acts as a pre-fetch buffer for handling selected job set for the next schedule, the frequency of

knapsack job selector is fast as compare to processor manager. Knapsack pipeline initially empty but as the pipe

fills it always carrying a subset as early as possible for the next allocation. Processor space refers to the

currently available processors where as job space refers to the batch arrivals.

VI. PARAMETERIC TERMS

DPM – Demand Promising Model, specifies that fixed demand allocation. In other words job’s demand must be

full filled during allocation. Processing deeds should not be modified or moldable structure is not applicable. If

current methodology follows the DPM model the thread level parallelism ultimately increased [1].

OEET – overall execution end time, deals with the total time taken at the end of the simulation. No. of batches

are arrived and get their scheduling active using knapsack methodology. This metric will measure the system

response that is how fast the simulation completes [1].

Throughput – This measure provides the no. of jobs completed in each time barrier. As the no. of jobs

completed are more it will increase the system performance

TLP – Thread level parallelism gives measure of running parallelism. As the job demand gets modified

parallelism will be decreased. This approach follows demand fit allocation, so parallelism will be increased [1].

PLP – Process level parallelism directly measures the number of processes currently in active state. PLP will

increase as the jobs have high moldable structure. Demand is modified to make more POS (Processor Offered

Space). This will lead to the increased processor availability and more no. of currently active jobs but thread

level parallelism will be decreases [1].

229 | P a g e

VII. SIMULATION VIEW

Fig. 2. Simulation View

Parallel scheduler plays an active role in job distribution. Scheduler operates according to a particular

scheduling schemes employed and no. of processors available during that time. Several scheduling schemes

exists, motivation is to allocate processors, best suited to current need/availability.

Simulator incorporates multithreaded environment. Batch arrivals are carried out by one thread where as one

thread handles knapsack job selector and intermediate pipeline controller. Job allocation and completion will be

handled by another thread. Finally simulation status measurement controls the system clock. Simulation results

are recorded periodically at some barrier point. Later the PWP results are compared with KNP (Knapsack

Parallel Scheduler).

VIII. RESULTS AND DISCUSSIONS

Results are carried out by running simulation after executing different samples. Each sample contains synthetic

workload. Number of batches arrived and knapsack scheduler performs sub set selection and fills the

intermediate pipeline. Below is the graph describing overall execution ending time using PWP and knapsack

based scheduler. Simulation executed withvarying number of samples containing different number of batches

each of which has different number of jobs. Analysis results exhibits how fast the knapsack scheduler is-

Table 3: OEET-Number of Processor-30

Batches 500 700 1000 1500

Type/Jobs 8429 11038 16716 20788

PWP 66 84 118 165

Knapsack 34 63 91 111

230 | P a g e

Fig. 3. Total Simulation End Time-NOP-30

The above graph exhibits that PWP policy structure has increased overall execution end time. Below is the

another example showing similar effect of increasing number of processors. Existing literature about PWP also

shows this effect. PWP adapts more moldable structure which leads to the response time delay. Although

process level parallelism PLP will be increased in PWP as compare to knapsack. But PWP does not full fill the

constraints of demand promising model. Further average processor utilization in each unit of allocation is

described. As the batch arrived and gets scheduled total number of processor allocated, free as well as number

of completed jobs at current timer barrier are stored in the system log which will be analyzed later on. As the

model performs demand satisfaction, this will increase thread level parallelism as compare to PWP which using

moldable approach of demand adjustments to manage best processor availability.

Table 2: OEET- Number of Processor-50

Batches 500 700 1000 1500

Type/Jobs 8429 11038 16716 20788

PWP 46 60 92 165

Knapsack 30 39 58 111

Fig. 3. Total Simulation End Time-NOP-50

231 | P a g e

Table 4: Average Processor Utilization- NOP-30

Batches 500 700 1000 1500

Type/Jobs 8429 11038 16716 20788

PWP 24.66 25.16 24.29 24.9

Knapsack 29.14 29.25 30 29.75

Fig. 4. Average Processor Utilization-NOP-30

Average processor utilization computed by taking simulation results from the very beginning to till the end of

simulation. No of processor allocated in each cycle. As the properties of knapsack describe optimal selection of

sub set in each cycle, so knapsack provides better results than PWP.

Throughput is another factor of measuring system performance. PWP throughput is measured from the

simulation and then compared with the throughput of knapsack scheduler. Below are the graphs that will

exhibits throughput achieved by both the systems.

Graph describes here illustrates that knapsack results are better in terms of throughput as compare to PWP

system. Whether the numbers of processors or jobs are increased. There are no impacts on the performance of

both the systems.

232 | P a g e

IX. CONCLUSION AND FUTURE WORK

The work done in this research incorporates rigid behavior of parallel workload that is demand of jobs will not

be modified at any cost. As the literature describes sometimes it is not possible to allocate the complete batch

corresponds to the current availability of processors. So its is required to focus on sub set selection from the

batch that is more optimal selection of job set from the current batch, this will maximizes the performance of the

system. As the illustrations describes overall throughput of the knapsack scheduler is more that PWP scheduler.

Similarly average processor utilization is more in case of knapsack scheduler, not the full utilization some of the

times this is because during subset selection it might be possible that there is no job available in the batch which

has demand corresponds to current availability. Small processing limits may sit idle this is because no job

having demand corresponding to available limit is available. Future work of this scheme must contain

improvement to the current work. As the no. of processors are increases in the scheduler the process of knapsack

subset selection is going to be slow. So the knapsack controller activities may be partitioned into multiple

pipelines.

Table 4: Comparative Analysis

FACTOR/

POLICY

SDF EEMA M-

LIDA

PWP KNP

PLP Ex-Low Low High Ex-

High

High

TLP Ex-High High Ex-

High

Ex-

Low

Ex-

High

Throughput Low High Ex-

High

Ex-low Ex-

High

DPM Ex-High High High Ex-low Ex-

High

OEET High Low Low Ex-

High

Ex-

low

APU

 Average Processor Utilization

High High High High Ex-

High

MS -Moldable Structure Low Low High Ex-

High

Low

233 | P a g e

As per the comparison described above, KNP approach is the best suited policy for the rigid based job allocation

structure, where no need of demand changing exist at any cost. Moldable approaches follows demand

modification so leads to the maximization of process level parallelism but over all throughput may be low due

to the job execution at less no. of processors. Bon the other hand knapsack based scheduler performs best

processor utilization as well as it follows demand promising model of computation. Overall execution end time

also decreased as compare to other policy set.

REFERENCES

[1] S. Bagga, D. Garg “Moldable Load Scheduling Using Demand Adjustable Policies” ICACCI-2014

Galgotia Noida, IEEE Xplore, pp. 143-150.

[2] G. Sabin, M. Lang “Moldable Parallel Job Scheduling Using Job Efficiency: An Iterative Approach”12

international workshop JSSPP 2006, Springer Berlin, Saint Malo, France, pp. 94-114.

[3] K. Huang“Moldable Job Scheduling for HPC as a Service with Application Speedup Model and Execution

Time Information” Journal of Convergence, Vol. 4, December 201, pp. 14-22.

[4] J. Moscicki “Processing Moldable Tasks on the Grid: Late job binding with light weight user-level

overlays” in Elsevier Science, Publisher B. V. Amsterdam, The Netherlands, 2011, pp. 725-736.

[5] M. Etinski “Parallel Job Scheduling for Power constrained HPC systems”, Elsevier Science, B. V.

Amsterdam, The Netherlands, 2012, pp. 615-630.

[6] A. Stephen, P. Daniel “Dynamic Scheduling of Parallel Jobs with QOS demand in Multi-Cluster and Grid”

University of Warwick, 5
th

 IEEE/ACM international Workshop on Grid Computing 2004, pp. 402-409

[7] V. Nguyen, R. Kirner “Demand Based Scheduling Priorities for Performance Optimization of Stream

Programs on Parallel Platforms” 13 International Conference, ICA3PP 2013, Springer Berlin Proceeding

Part-1 18-20.

[8] S. Kolliosopoulos, G. Steiner “Partially Ordered Knapsack and Application to Scheduling”, Elsevier

2007, Vol. 155, issue 8. pp. 889-897.

[9] G. Feitelson “Job Scheduling Strategies for Parallel Processing” IPPS/SPDP 99 WS, JSSPP 99,978-3-540-

66676-9

