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ABSTRACT 

In this paper the effect of stress-softening on the hyperelastic rubber string is investigated by using neo-

Hookean material model. The microstructural damage is characterized by an exponential softening function 

that depends on the current magnitude of the strain–energy function and its maximum previous value in a 

deformation of the virgin material. This theoretical damage model is developed in order to provide a description 

of an idealized form of the Mullins effect for various deformation states. Tension and stretch distribution along 

the balloon height can be predicted. Air drag is particularly useful in controlling the shape and size of the 

balloon. 

It is assumed that the extent of stretch is limited to an upper bound value of 3, i.e. λ≤3.  Since the simplest 

possible constitutive behavior of a hyperelastic, homogenous and incompressible rubber material in this range 

is given by neo-Hookean model, which we shall use in our present work. A solution to the boundary value 

problem is obtained by shooting method for the ballooning motion of a neo-Hookean string. It has been 

observed that preconditioning makes the rubberlike material softer and one needs comparatively less length to 

form a steady state balloon for a given tension, and the softer string shows more ballooning radius by stretching 

the balloon more in comparison to that prevailing in the virgin string. Stress-softening is found to be more 

effective in lesser values of speed. A good correlation is found when experimental results are compared with 

theoretical results. 
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Nomenclature 

a String radius at fixed eyelet 

e1,e2,e3 Rotating coordinate system  

H            Ballooning height 

h Nondimensoinalised balloon height  

i, j, k Indices  

l0 Nondimensoinalisedundeformed length of the balloon  

γ Nondimensoinalised parameter, ratio of Young’s modulus to inertial stress  

Ω  Angular velocity  

S0,S1,S2   Arc length inreference configuration, steady state configuration and final configuration respectively 

t  Time  
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t Nondimensoinalised time  

P  Tension in the string  

p Nondimensoinalised parameter, ratio of tension in string to inertial force  

ρ Density of string  

λ Stretch  

s Nondimensoinalised arc length coordinate  

Y Young’s Modulus  

κ0,κ1,κ2 Configuration of the system  

A            Area of the string  

X,Y,Z Stationary Coordinate system  

x,y,z Nondimensoinalised coordinates  

r Normalized position vector 

r Balloon radius at rotating eyelet  

λe Stretch at fixed eyelet  

Δ0 Undeformed length parameter 

Pe Nondimensoinalised tension at eyelet  

ε Error  

B Left Cauchy-Green deformation tensor 

F            Deformation gradient 

b Softening parameter 

Θ Maximum previous strain intensity 

θ Current strain intensity  

W          Strain energy density function. 

 

I. INTRODUCTION 

 

As far as the elasticity of rubber is concerned there are some fundamental assumptions that are adopted in the 

phenomenological theory: the material is (a) hyperelastic, (b) isotropic, and (c) incompressible. 

Hyperelasticitymeans that the properties of the material are described in terms of a strain-energy functionand it 

refers to those materials which can experience large elastic deformation. The elasticity of a solid can vary 

depending on its state of deformation. Metals will soften and polymers may stiffen as they are deformed to 

failure levels. It happensonly when the deformation is infinitesimally small that elastic moduli can be considered 

constant. Yet, many existing theories model fracture using linear elasticity, regardless of the fact that materials 

will experience extreme deformations at crack tips. Here we show that the elastic behavior observed at large 

deformations, hyperelasticity can play a vital role in the dynamics of fracture, and that linear theory is 

incompetent of fully capturing all fracture phenomena. Isotropy (relative to a stress-free configuration) is a very 

good approximation in most circumstances and is almost invariably used by practitioners. Incompressibility is 

an idealization, justified by the fact that the shear modulus of the material is very much smaller than the bulk 

modulus (typically the ratio is of order 10
-4

) and volume changes can be neglected except in extreme situations 

where the hydrostatic stress is very large. For the most part isotropy and incompressibility are assumed in 
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practical applications. The strain energy is a function of the deformation gradient F (relative to some fixed 

reference configuration). 
 

The hyperelastic, homogenous, incompressible rubber like material models include several forms of strain 

energy functions, such as Neo-Hookean, Ogden [1], Arruda-Boyce [11]and James-Guth [12]. To account for 

large deformation in such materials we consider symmetric left Cauchy-Green deformation tensor B, given as 

 TB FF   (1) 

where F= is the deformation gradient, in which x is the position of particle in deformed configuration and X is 

the position of particle in undeformed or reference configuration. The strain energy density function is the 

function of three invariants of the strain tensor B and they are defined as 

2 2

1 2 1 3

1
, ( ), det

2
   I trB I I trB I B    (2) 

For incompressible materials, I3=1. Thus the strain energy density function depends only on first two 

invariantsfor any isochoric deformation i.e. W=W(I1,I2) and the Cauchy stress response is written as 

1

1 2

2 2     
      

    

W W
T pI B B

I I
   (3)  

wherep is the undetermined hydrostatic pressure appearing from the incompressibility constant and 

1 20, 0     W I W I
.
 The principal directions at a point are eigenvectors ofB, and the positive square 

roots of its eigenvalues are the principal stretches λ1,λ2,.λ3 and the invariants can be expressed in terms of these 

as  

I1 = λ1
2
 + λ2
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2
 = 1.                         (4) 

 

II. MULLINS STRESS-SOFTENING EFFECT 

 

When a rubber specimen is loaded uniaxially at a very low strain rate, unloaded, and loaded again, the load 

required to produce same deformation in the second loading cycle is somewhat smaller than the load that 

produced it initially. The stress-softening phenomenon, also called the preconditioning effect, is widely known 

as the Mullins effect. 

Johnson and Beatty [7] considered the material is composed of two phase (i.e. the hard phase and soft phase). 

Both phases are distributed uniformly throughout the material. Therefore the total length of the virgin specimen 

is the sum of the lengths of hard passé and soft phase, l=ls+lh. During the primary extension from the virgin state 

the hard phase is converted into soft phase. The conversion occurs only during primary deformation. Let ζ 

denote the linear fraction of hard phase present in the material in the macroscopically undeformed configuration. 

It follows that the remaining fraction 1-ζ is the linear fraction of soft phase. The conversion of this hard phase to 

soft phase depends only on the maximum previous stress experienced by the hard phase. 

Let microscopic uniaxial engineering strain is ε=λ-1. If we write the uniaxial engineering strain in the hard 

phase as εh=λh-1 and uniaxial engineering strain in the soft phase as εs=λs-1. After some small calculation the 

strain in the soft phase can be written as 

1

1



s 


          (5) 
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Equation (5) can also be written as  

s    (6) 

where  is the strain amplification factor. 

The Mullins stress-softening effect is considered as a damage mechanism of the rubber like materials. Figure 1 

shows the quasistatic loading process. As the material is first loaded along path A in figure 1(a) for t ϵ [0,s1], the 

strain response follows path A in figure 1(b). At time t = s1, a stress of σ(s1) = σ1 has been reached. During the 

unloading from a stress of σ1 to a stress of zero in Figure 1(a), the stress history traces path B for t ϵ [s1, sp] and 

the corresponding strain follows path B in Figure 1(b). The material is loaded again, and the strain traces curve 

B in Figure 1(b) for t ϵ [sp, sq] in the stress history in Figure 1(a). Finally the stress is again reduced to zero 

along curve F in Figure 1(a), and the strain traces curve F in Figure 1(b). 

Now consider a fresh identical specimen subjected to a stress history in which the material is loaded directly to a 

stress σ3 and then unloaded. The strain response during loading for our ideal model follows path ACE in Figure 

1(b), and during unloading, it traces curve F. If we now load and unload this same specimen repeatedly to and 

from a stress σ3, the loading and unloading strain response will each trace path F in Figure 1(b).   

To illustrate the interpretation of the maximum previous stress, consider the stress history shown in figure 1 (a). 

For t ϵ [0, s1], the maximum previous stress is just the current stress, σmax= σ(t). On the interval t ϵ [s1, sq], the 

maximum previous stress is σmax= σ1. When t ϵ [sq, s2], the maximum previous stress is again the current 

stressσmax= σ(t). Thus, during a stress controlled experiment, the maximum previous stress may be a constant or 

a function of time. 

 

 

Fig: [1] Physical Description of Mullins Stress-Softening effect (a) Strain History, (b) Stress-

Strain Relations [2]. 

Ogden [1] discussed the elastic behavior of rubber and found out how the behavior departs from the purely 

elastic. Johnson and Beatty [2] introduced the stress controlled experiment. In the stress controlled experiment, 

the uniaxial engineering stress is applied to the specimen in a predetermined manner, and the subsequent strain 

is measured.The constitutive equation developed by Johnson and Beatty [2], in which they investigated more 

closely how the outcome of the stress controlled uniaxial extension experiment can be used to get insight into 

the specific nature of the microstructural strain and the strain amplification functions which comprise the 

constitutive equation. Cheng and Chen [4] investigated experimentally the stress-stretch behavior of EPDM 

(a) (b) 

 

σ(s) σ 

ε 
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rubber, Results show that the stress–stretch behavior is significantly dependent on stretching rate and the 

Mullins effect exists under dynamic loading.  

Batra, Ghosh and Zeidman [3] proposed an integrated approach to dynamic analysis of the ring spinning 

process, initially they ignored the effect of air drag as well as gravitational and coriolis accelerations, and then 

they considered the effect of air drag. They observed that air drag is particularly useful in controlling the shape 

and size of the balloon.Zuniga [5] developed energy based model to characterize stress-softening effect in 

elastomers. They presented a new constitutive model for stress-softening for which the damage function 

depends on the magnitude of the energy at a material point, and then they appliedneo-Hookean model to derive 

stress-softened material constitutive equations.The model uses the following function defined as 

( , )
 

 s mb W W

s mF W W e   (7) 

Johnson and Beatty [7] considered the mechanical behavior of a stress-softened material and found out that, it is 

necessary to introduce the idea of materials deformation history. Batra, Ghosh and Zeidman [6] discussed on the 

dynamics of the ring spinning process in presence of air drag, this analysis was different from previous analysis 

due to choice of different boundary condition, and it was more realistic.  

Dorfmann and Ogden [8] presented the behavior of the hyperelastic rubber in one constitutive model (i.e. stress 

softening and permanent set behavior). Cantournet, Desmorat and Besson [9] explained the phenomenon of 

internal sliding of filled elastomers. Tang, Fraser and Wang [10] modeled the ballooning motion for ring 

spinning process and found out that the air drag affects the balloon tension, which in turn affects the energy 

consumption and yarn productivity in the ring spinning process.Sarangi, Bhattacharyya & Beatty [13] 

formulated the dynamical problem of a stress-softening, neo-Hookean rubber string. 

 

III. PROBLEM FORMULATION  

 

Constitutive relation for preconditioned string is given by Zuniga [5]. Therefore the tension- stretchrelation for a 

stress-softening neo-Hookean material is given by 

2

AY 1
= λ -

3 λ

 
 
 
 

b

i i

i

P e 
where  1,2i  (8) 

Where  defines the maximum previous strain intensity and θ is the current strain intensity which is given as 

4

2

2
   


   ,  4

2 2

2

2
  


 (9)           

The softening compels the string to elongate more than the virgin material (i.e. the material which has never 

been deformed earlier) for the same load. The softening function ( , )    bF e   is a function of both the 

maximum previous stretch and the current stretch. The maximum previous stretch in our discussion is the eyelet 

stretch, i.e.   e . 

 

IV. EQUATION OF MOTION 

 

The tension in the string is influenced by the stress-softening effect. Hence the equation of motion for the stress 

softened neo-Hookean string as follows 
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The following dimensionless parameters are used to normalize the equation of motion.  

1

1 2 3 2 2

P
r=xe +ye +ze = /a,     = /a,    = ,

ρAa Ω
pR u U  

20 n

20 n2 2

16aD
 γ= ,     t=Ωt,    ,   d =

Aρa Ω




n

n VY
v

a 
 

By using above parameters the normalized equation of motion can be derived as 
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V. STEADY STATE BALLOONING MOTION 

 

Shooting method is employed to get steady state solution. Air drag makes the motion non-planar and the planar 

solution can be obtained as a special case. Governing equation of motion for steady state as 
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The above set of equations (12)-(14) is to be solved along with the tension relation 
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Recall equation (8), the relation between tension and stretch without preconditioning is given as 

1

1 2

1

31 3
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Fig.[2] Normalized Eyelet Tension Versus Eyelet Stretch of a Virgin Neo-Hookean Ballooning 

String in Steady State for Different Values of γ=[20,33,50,100,1000]. 

Figure (2) shows the variation of eyelet tension versus eyelet stretch for different values of γ, it is clearly 

observed in the Fig. that the stress-softening effect is predominant for lower values of γ i.e. at higher speeds. 

And for higher values of γ it is less significant. 

 

V. RESULTS AND DISCUSSION 

 

Shooting method is used in this paper to solve the planar and non planar steady state equations for γ=33 and the 

variation of normalized tension pewith undeformed length parameter Δ0 (=(l0-h/l0)) is plotted in Fig (3).  

gamma=33

gamma=50

 

                    Fig: [3] Normalized eyelet tension versus string length for a            Fig: [4] Normalized eyelet tension versusstring length 

Preconditioned string  =2, h=10, γ=33 for drag  for a preconditioned string  =2, h=10, γ=50 and 

Coefficient dn=1, softening parameter b=0.75,   γ=33 for drag coefficient dn=1, softening parameter. 

          b=0.527 and b=0.           b=0.527 

This Figure(3) shows the steady state plot of a preconditioned (stress-softened) ballooning rubber string for 

which the maximum previous stretch is the eyelet stretch  e (where λe is fixed eyelet stretch). The stress-

softened response is given by the solid and dash line for  =2, h=10, γ=33 dn=1 and softening parameter 

b=0.75, b=0.527. The corresponding virgin response is shown by dotted line for  =2, h=10, γ=33 dn=1. It is 

Δ0 Δ0 

γ=20 

γ=33 

γ=50 

γ=100 

γ=1000  

 

 
Eyelet stretch λe 

pe 
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observed from the Figure 3, that the fixed eyelet tension for the virgin cord is mostly much larger than that for 

the stress-softened response in the range of Δ0 and as we increase the softening parameter (b=0.527 to b=0.75) 

the eyelet tension decreases for a givenΔ0. 

Figure 4 shows the variation of normalized tension pe with normalized length parameter Δ0 for different values 

of speed parameters asγ=50 and γ=33 (γ is inversely proportional to angular velocity). A hyperelastic string is 

tied between two eyelets and it is rotated with speeds corresponding to γ=50 and γ=33 and drag coefficient as 1 

(i.e.dn=1). It is observed that for a given value of eyelet tension the string with higher speed (i.e.γ=33) required 

less undeformed length and it stretches more due to high speed. Hence we can say that at higher speeds, the 

stress-softening effect is more. 

Figure 5 shows the steady state plot for the variation of normalized tension pe with normalized length parameter 

Δ0 for different values of speeds asγ=50 and γ=33 and slightly change softening parameter b=0.75. In this 

Figure, it is observed that for a particular value of length parameter Δ0 (say for example, Δ0=-0.6), for the 

softening parameter b=0.527 (Fig. 4), we get fixed eyelet tension pe=12 and 9.62 for corresponding speeds γ=50 

and γ=33 and for softening parameter b=0.75 (Fig 5), we get fixed eyelet tension pe=10.3 and 9.1. Therefore one 

may conclude from Fig.(4) and Fig.(5) that the softening reduces the eyelet tension for a particular Δ0 and effect 

of softening is less for high speeds (i.e. for γ=50 the effect of softening is more compared to γ=33). 

 

Fig: [5] Normalized Eyelet Tension Versus String Length for a Preconditioned String  =2, 

h=10, γ=50 and γ=33 for Drag Coefficient dn=1, Softening Parameter b=0.75. 
Figure 6 shows the variation of stretch of single loop balloon for normalized tension pe=18 and corresponding 

virgin and stress-softened shapes are shown for different softening parameters (i.e. b=0, b=0.527. b=0.75). It is 

observed from steady-state curve that for any value of normalized tension pe for which the solution 

corresponding to the single loop balloon, the left solution for lower value of undeformed length parameter Δ0and 

right solution corresponds to the higher value of undeformed length parameter Δ0 (graph not presented here). 

After a certain Δ0 the solution is governed by the right solution for single loop balloons and the string deforms 

more to describe larger ballooning radius. In Figure 6, it is observed that the stretches at the rotating and fixed 

eyelets for the virgin balloon are same irrespective of the right and left solutions. Similarly, for the stress-

softened case the stretches at the left and right solutions also coincide. There is a slight difference between the 

values obtained in these two cases in rotating eyelet. 

Δ0 
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(a)                                                                                                      (b) 

Fig: [6] Variation of Stretch for (a) Left Solution and (b) Right Solution at Pe=18, h=10, γ=33, 

for Drag Coefficient dn=0 and Softening Parameter b=0, b=0.527 and b=0.75 

Figure 7 shows the variation of radial distance (r) of single loop balloon for normalized tension pe=18 and 

corresponding virgin and stress-softened shapes are shown for different softening parameters (i.e. b=0, b=0.527. 

b=0.75). It is observed that the softened string defines the more ballooning radius as compared to that of virgin 

string, and the ballooning radius increases with increasing softening parameter. 

 

(a)                                                                                           (b) 

Fig: [7] Variation of Radial Distance for (a) Left Solution and (b) Right Solution at Pe=18, h=10, 

γ=33, for Drag Coefficientdn=0 and Softening Parameter b=0, b=0.527 and b=0.75. 

The variation in shape of the preconditioned and virgin string with different normalized tension is 

shown in Figure 8. The stress-softened response is shown by solid lines where as the virgin response is shown 

by dashed lines. The radial distance here is the perpendicular distance measured from spindle axis at the point is 

represented 2 2 r x y . The ordinate of the Figure at origin represents the rotating spindle end and the end of 

the axis represents the fixed eyelet. Earlier we observed that the stress-softened string induces more ballooning 

radius and subsequently it stretches more compared to the corresponding virgin case. For example, for pe=15 the 

Stretch λ Stretch λ 
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left solution of the softened string defines the undeformed length parameter Δ0= -0.689 (i.e. lo=5.9206) in 

comparison to its corresponding virgin value as Δ0= -0.676 (i.e. lo=5.9665). The deformed length parameter Δ1= 

0.010 (i.e. l1=10.1) is same for both the cases. On the other hand, for pe=7 the softened string defines the 

undeformed length parameter Δ0= 0.231 (i.e. lo=13.004) in comparison to its corresponding virgin value as Δ0= 

0.238 (i.e. lo=13.123). However, in this case the deformed lengths are different, i.e. the softened string deforms 

more to a length of l1=15.723 in comparison to that of virgin string, which gives the value l1=15.587. Figure 

shows the ballooning radius for various tensions remains almost the same for virgin and stress-softened cases. 

 p
e
=7, stress-softened

 p
e
=15, Virgin

 p
e
=7, stress-softened

 p
e
=15, Virgin

 
               Fig:[8] Balloon shapes for a preconditioned string ᴧ = λe,         Fig:[9]Variation of stretch with height of a preconditioned 

              h=10, γ=33, dn=0, b=0.527. For virgin and stress   string    = λe, h=10, γ=33, dn=0, b=0.527.  

               softened case.     For virgin and stress softened case. 

Figure 9 shows the variation of stretch with ballooning height for different normalized tensions. It is observed 

that for a particular value of normalized tension the stretch in the stress-softened string in more in comparison 

with virgin string. However at fixed eyelet both the stress-softened and virgin string defines the same eyelet 

stretch λe and this is the maximum stretch in the string in that perticular value of tension. 

Figure 10 shows the Variation of normalized eyelet tension with eyelet stretch. Mullins effect observed 

theoretically in the hyperelastic ballooning rubber string in Fig (10). 
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Fig.[10] Variation of Normalized Eyelet Tension with Eyelet Stretch.V is the Virgin Path and S 

is the Stress-Softened Path. 

 

Eyelet Stretch λe 

 

pe 

V1 

V2 

 

V3 

 

S1 S2 S3 



 

363 | P a g e  

VI. CONCLUSIONS 

 

Effect of stress-softening on a ballooning hyperelastic rubber string is investigated. It is found thatthe softening 

effect is significant for higher rotational speeds, i.e. for lower values of γ. The softening reduces the induced 

tension in the material and subsequently it increases the ballooning radius as compared to virgin string. 

The hyperelastic material is subjected to various amount of maximum previous stretch and it is observed that the 

considerable softening is present only at elongations less than the previous stretch and the elongation above the 

maximum previous stretch is given by the virgin material response. 

The present study brings some scope of future work as, effect of bending stress on ballooning motion of the 

rubber string, effect of twist on a ballooning string, effect of linear velocity of the yarn. 
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